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Chapter 6
In which we really get things moving

Whenever you start talking about optimization, some crusty
engineer will pipe up from the back of the room quoting
Donald Knuth, and declaim "Optimization is the root of all
evil!" It's OK to ignore them. They're working through past
trauma.

The thing is they aren't totally wrong, but they left out an
important part of the quote: "Premature optimization is the
root of all evil." The trouble with optimization is not that it's
a bad thing. The trouble is that it's so much fun. It's
addictive. It can quite easily become an obsession that
eclipses all other concerns and takes up all the oxygen in the
room.

To illustrate this, consider automobiles. There's an engine
that produces torque, turns the wheels, and makes a people
container move forward. The speed at which it moves can be
measured, and as soon as you put a number on a thing
engineers everywhere will feel the irresistible compulsion to
make that number go up or down as far as it can go. While
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there is nothing morally wrong with making a car go faster,
when the pursuit of that goal neglects all other
considerations, including the physical safety of drivers and
pedestrians, it can definitely become an evil.

Speed isn't the only thing that can be measured and
optimized. There is also torque, power, and acceleration.
Importantly, there is also a whole collection of other things
we can measure and optimize that have nothing to do with
going faster —passenger carrying capacity, cost of
ownership, performance on safety tests, fuel efficiency. The
tirst step before jumping into optimization is deciding what
to optimize. All of these quantities are arguably useful or
beneficial in some way, but it's impossible to optimize for all
of them at once. Inevitably, making one number get better
will make another one get worse. It's hard to increase
horsepower without decreasing fuel efficiency. Making a car
perform better in safety tests usually involves more material
which leads to more mass, lower acceleration, and higher
construction costs. There is no free lunch. When choosing to
optimize one thing, we choose to ignore or penalize
everything else. This is dangerous when not done
thoughtfully.
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Of course, Donald Knuth was well aware of all of this. The

larger context for the quote provides this nuance.

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative
impact when debugging and maintenance are
considered. We should forget about small
efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not
pass up our opportunities in that critical 3%.'

So the next time a curmudgeon blithely dismisses your
optimization efforts, feel free to "well, actually” them with
this.

! Knuth, "Structured Programming with Goto Statements". Computing
Surveys 6:4 (December 1974), pp. 261-301, §1. doi:10.1145/356635.356640
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It's all a game

The reason optimization is so damn fun is that it's structured
like a video game. The thing you can measure, that's your
score. Whether you're aiming high, like in Pac-Man, or low,
like in golf, you always have a way to assess how well you're
doing and whether your latest run set a new record. And
because it's a software system, you can put on a serious face
and pretend like you're doing Important Work, disguising
the glee of your inner 13-year-old.

Code execution speed is a particularly addictive game to
play, because it's often easy to iterate fast. Make a change,
time of your code, make a change, time your code.
Depending on your project, you can go through several
iterations per minute, plenty to keep your thrill levels up.

The trick then is to find a problem where code execution
speed is actually what's limiting you, where it really is the
thing that needs to be optimized more than everything else.
Lucky for us, physics simulations provide just such a
playground.

This chapter was originally supposed to be just a section of
the chapter on physics simulations, but there is so much to
say on the topic, and it will have application in so many
other parts of the algorithmic work that we do in the future,
that it grew into a chapter of its own. To get the full context
of the computations we will be optimizing, I recommend a
skim through Chapter 5, but it won't be strictly necessary.

Real time physics simulation requires fast computation
because we've set ourselves the high bar of keeping up with
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the wall clock. There is a lot going on in even the simplest
physical environment, and it's all happening extremely fast.
The best any simulation can hope to do is roughly
approximate it. Even 100 particles interacting with each
other in real time creates a hefty computational load. Physics
simulations are always thirsty for more compute capacity,
and real time simulations even moreso.

This is our sweet spot! Our optimization is no longer
premature, and Donald Knuth would not judge us for
spending time making our code run faster. We know exactly
what we're doing and why, and we can justify the game
we're playing with a straight face.

Optimizing for adorableness also has its hazards.
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Profiling

The best recipe I've seen for writing fast programs is this:
F.69" Chrisshy Keygen
[ '7" @rgegriff@hackers.town

How to do performance optimization:

1. Figure out what is taking too
much time in your program
2. Stop doing that

Chrisshy Keygen on Mastodon. Used with permission.

or restated:

Write slow programs

Find out where they are slow

Figure out how to speed up the slowest part
Go back to step 2

LN

Step 2 is also called profiling and the tools that let you watch
programs to find the slow parts are called profilers. There are
several good ones to choose from, including a suite of
profiling tools built right into Python called cProfile. My
personal favorite is one called py-spy. Unlike cProfile,
py-spy runs in a separate process so it won't trip up your
Python process and introduce overhead. It can trace its
lineage back to the one and only Julia Evans' work on rbspy.

This is the recipe I followed while developing the simulation
code. There is a big temptation to skip step 2 and jump right
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to writing fast code. The difficulty with this is that it's
actually pretty tough to know what parts of your code are
the slowest until you have A LOT of experience, and even
then you can be surprised. You risk making your code overly
complicated without fixing the slow parts. You might even
make it slower by accident. Don't make me repeat the
Donald Knuth quote.

Another thing to keep in mind is that your code might
already be fast enough. If it does the job that needs doing
without getting in your way, that's good enough. Faster code
is not an inherent virtue. Fast enough code is all we need. In
the case of our simulation, we want it to be fast enough to
complete its simulation calculations within one cycle of the
simulation clock. Once we get to that point we can sit back
and have a cold drink.

Profiling with py-spy

When I use py-spy at the command line, one of the
arguments I need to provide is the process ID (or pid), a
number that identifies which process I want to spy on. To see
what's currently running and get the pid I need, I use
Linux's ps command. It returns a list that includes three
Python processes.

$ ps -a

71974 pts/1 00:00:00 python3
71975 pts/1 00:00:27 python3
71976 pts/1 00:00:24 python3
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Helpfully, it also shows the total CPU time taken by each.
This helps to identify which is the runner process and which
are the simulation and visualization processes. The runner
has almost zero CPU time. The other two are comparable, so
finding which one is the simulation can require trial and
erTor.

Here is the command to get py-spy to generate the "top"
view of process 71975. top is the Linux command for
surveying the complete set of processes running on the
machine and the resources they are using. It is another way
to get the pids of any active Linux processes.

$ py-spy top --pid 71975

Linux informs me that I have to have root permissions to do
this and prompts me to modify the command to this.

$ sudo env "PATH=$PATH" py-spy top --pid 71975
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This command launches a top-like view of a single process,
where each row is a separate function.

! thon v3

e: 61.00%, Thr

%Total OwnTime TotalTime

This unprepossessing snapshot is a treasure trove. In one
view, we can instantly see where our program is spending its
time. The third column is what we are most interested in. If
we want to speed it up, we focus our attention on the top
few lines. It shows the total CPU time that has been spent on
any given function.

Here, py-spy calls out body.py's calculate_interactions()
function as taking up 17.65 seconds of CPU time, more than
any other function. (And this is after I have already done a
lot of optimizing to speed it up.) The interactions between
atoms were by far the most time-consuming part of the
simulation, and the interactions between atoms and walls in
calculate_wall_forces() weren't far behind. The fact that
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they are still the longest poles in the tent gives a hint as to
just how much of a bottleneck they are. Before optimization
they were many times slower.

The appearance of pacemaker.py's beat() in line 3 is actually
really good news. This is the function that sits and twiddles
its thumbs when there is time to kill after simulation finishes
all its calculations for the time step. The fact that it occupies
such a sizable fraction of the time shows that the simulation
has some computational elbow room.

The next line, _wrapreduction, comes from the Numpy core
library. It's safe to assume for the first five years of your
programming career that anything in Numpy core is as fast
as it can possibly get. The only way to speed it up is to
re-examine your approach and find a way not to call it in the
tirst place. But if your slowest functions are in Numpy core,
that's a good sign that your code is already running at high
efficiency.

The other wildly valuable piece of information we can get
from this is what we don’t need to spend time speeding up.
By the time we get past the first few items on the list, there is
a rapidly diminishing return. The rest are background noise.
Even if we know an easy trick to speed them up 100 times, it
may not be worth our effort to implement it. In that area we
can keep the code simple, naive, hopefully easier to read,
and focus on speeding things up at the top of the list.
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Vectorization

There's probably a lot of smart stuff to be said about
vectorization, but it boils down to this: whenever you can
take your math and put it into Numpy arrays, do it. It's so
much faster. Python is good at a great many things, but
quickly iterating over for-loops is not one of them. The folks
who do the under the hood optimizations for Numpy arrays
are amazing, and I take advantage of their fine work
wherever I can.

By way of demonstration, we can do a head-to-head
comparison of two cases. The first is adding two lists,
element by element. (The actual code I used here is in
sum_list.py in the code repository for this chapter.)

N = # a big number
list(range(N))
list(range(N))

o >
1}

# Time this snippet
for i in range(N):
Cl[i] = A[i] + B[1i]

The second case is adding the same numbers, but in the form
of Numpy arrays. (Actual code in sum_array.py of the

chapter repo.)

np.arange(N)
np.arange(N)

# Time this snippet
C=A+8B
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There's a bit more to the code to make sure that the compiler
doesn't cheat and avoid doing the work, but the snippets
above are the important part. (For a refresher on timing code
in a way that measures what we think we're measuring,
revisit Chapter 2.) For N = 10 million, the for-loop case takes
1300 milliseconds and the Numpy array case takes 18
milliseconds on my machine.

The exact numbers here aren't the important part. If you run
these scripts, your results may be very different. It is the
nature of optimization to be very specific, and your results
will vary with different data types, array sizes, operating
system, Numpy version, and processor type. So the
important takeaway here is not that Numpy is 72 times
faster, but that it can speed things up a lot, where "a lot" will
vary by context.

Vectorization can take some work

It's not always easy to figure out how to take a calculation
from a for-loop and make it into an array operation.
Sometimes you have to do some mental gymnastics. This is
illustrated well by our atom-to-atom distance calculations.

In two dimensions, the distance between any two points is
the difference between their x-coordinates squared, plus the
distance between their y-coordinates squared, all under the
square root. Logically, if we want to find the distance
between two groups of points, group A and group B, where
group A has M points, and group B has N points, this will
give a total of M x N different distances. A logically
straightforward approach is to start with one point from
Group A, find the distance from it to each of the N points in
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Group B, then repeat for each of the M points in Group A.
This is naturally expressed as one for-loop nested within
another. The code flows like this.

for point_a in group_A:
for point_b in group_B:
distance_ab = (
(x_a - x_b) ** 2 + (y_a - y_b) ** 2 ) **

Sadly, Python does not execute for-loops quickly. After you
do your profiling and find a function that needs to be sped
up, and within that code you find a nested for-loop, you
automatically know this will be a great place to start. This is
the case for us here.

Let's start by just focusing on the x- difference. We can put all
of the x- coordinates of our M points from group A into one
array and all N of our x- coordinates from group B into
another array. For M =4 and N = 3:
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Now the trick is to manipulate them so that we end up with
a two dimensional M x N array of differences that looks like
this.

Maybe you can already see a path to get there.

The trick is to take our one dimensional arrays of x-
coordinates and expand them to be two dimensional in just
the right way. In both cases, the expanded array will be M x
N in shape.
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For our group A x-coordinates, we want them to end up
tiled across columns, copied so that each column has an
identical set of them.

XAO XAO XAO
XAl XAl XAl
XAZ XAZ XAZ
XA3 XA3 XA3

And we want our x-coordinates from group B to be tiled
across rows. Each row of the resulting array will have an
identical copy of the x-coordinates from group B.

XBO XBl XBZ
XBO XBI XBZ
XBO XBl XBZ
XBO XBl XBZ

That's the trickiest part. With the tiled coordinates from both
groups we can get the differences by doing an element-wise
subtraction of one array from the other. We can also do
element-wise squaring, add it to a similarly constructed set
of y-coordinate differences, then take the square root of the
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whole thing. The result is an M x N array, where the element
(i,j) at row i and column j is the distance between point i in
group A and point j in group B.

The mechanics of tiling a one dimensional array to get a two
dimensional array are the last thing left to unpack here. The
first step is to take our one dimensional array of coordinates,
and turn it into a two dimensional array having only a single
row or column. For group A we want it to be a two
dimensional array of shape M x 1, M rows by one column.

XAO

XAl

XA2

XA3

For group B we want it to be a two dimensional array of
shape 1 x N, 1 row by N columns.

BO Bl B2
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We can tile these out to their full sizes by doing matrix
multiplication with arrays of all ones of the appropriate
shape. For group A we can multiply it by an array of ones
with one row and N columns. (In Numpy, the @ symbol is
shorthand for matrix multiplication, as opposed to scalar or
element-wise multiplication. For a refresher on matrix
multiplication, check out this walkthrough.)

XAO XAO XAO XAO

xAl XA1 XAI XAI
@ 1 1 1 =

XAZ XAZ XAZ XAZ

XA3 XA3 XA3 XAS

For group B we can multiply it by an array of ones with M
rows and one column.

1 Xgo Xy Xy

1 Xgo Xy X,
@ Xgo Xy X2 -

1 Xgo X1 Xy

1 Xgo Xy X2

There is also a Numpy function tile() that will do this for
you, but I find it helpful to keep a close mental eye on my
rows and columns so they don't get out of hand and bite me.
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We did the steps out of order, but we eventually got to the
bottom of how to vectorize our many-to-many distance
calculations. In Python, the whole sequence ends up looking
something like this.

# Create single-row and single-column 2D arrays

x_a_row = x_a[np.newaxis, :]

y_a_row = y_a[np.newaxis, :]

x_b_column x_b[:, np.newaxis]

y_b_column = y_b[:, np.newaxis]

# Create the all-ones tiling arrays
row_tile_a = np.ones((N, 1))
column_tile_b = np.ones((1, M))

# Calculate the arrays of x- and y-differences
d_x = (

(row_tile_a @ x_a_row) -

(x_b_column @ col_tile_b))
= (

row_tile_a @ y_a_row) -
y_b_column @ col_tile_b))

d_y
(
(
# Calculate the points from all A points

# to all B points.
distance = (d_x**2 + d_y**2) ** 9.5
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Not all vectorization will be this tricky, but sometimes it will
be (and sometimes it will be even worse). However, if you
proceed methodically and take the time to get them
working, you can speed up for-loop calculations to run faster
than a puppy at dinner time.

Did someone say dinner?
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Speeding things up with Numba

After vectorization, the next line of defense for accelerating
bottleneck code is Numba. You won't be too far wrong if you
think of Numba as a video game power-up that
supercharges your code so that it blasts down the race track
in a blur. But to really get the most out of Numba, we'll have
to lift the hood and look at the gears. This will be a bit of a
tangent, but hang with me here. It pays off in the end.

Python is a scripting language, which means that when you
tell Python to run, you are actually telling a specific
program, a Python interpreter, to read a text file, your
Python script, and step through it line by line. The
interpreter takes each line and translates it into concrete, low
level instructions for your CPU to follow.

This is opposed to working with a compiled language,
where a program called a compiler reads your entire text file
full of Java or Rust code, start to finish, and translates the
whole thing into machine instructions at once. Only after it
has successfully compiled can it be run.

(This is an oversimplification, but it's a useful mental model
for my purposes here.)

The benefits of working with a scripting language, like
Python, Ruby, or JavaScript, have to do with flexibility. I can
type Python one line at a time in an interactive window and
execute each one as I go. I couldn't do that if I were working
with FORTRAN or C++. It also means that I can run less
than perfect Python scripts. A buggy script may run part
way before crashing or, if the flawed code is never reached
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during execution, the script may run to completion just fine.
This can hide flaws and make the programmer's life a little
easier when they are hacking together quick solutions.

The benefits of a compiled language have to do with speed.
When a compiler gets to see a program in its entirety, it can
do a lot of clever things to make the program run more
efficiently and more quickly. These compiler optimizations
are a deep and fascinating rabbit hole of their own, but for
the most part we get to treat them as a magical black box and
reap the benefits without having to worry about how they
do what they do.

Numba lets us have the best of both worlds. With Numba
we can flag a function to be pre-compiled as a whole. Then
when we call the Python interpreter, it will walk its way
through the script as usual, except that when it reaches the
flagged function it will pause to read that function in its
entirety and compile it to low level machine instructions.
Numba will use a toolbox full of compiler optimizations to
make that code run faster than a line-by-line interpreted
Python script ever could. It can end up being 10 times faster

Oor more.

Pre-compiled Python is a hell of a drug. Once you get a taste,
you're going to want to Numba-fy all your code. But before
you do that, a word of caution. Numba is more finicky than
other Python and harder to debug.

One of the flexibility benefits Python brings is duck typing.
That means that when you start using a variable in your
script, you don't have to tell Python whether it's an integer
or a Boolean, a float or a string. Your Python interpreter will
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make that judgment on the fly based on how you're using it
and what you're asking it to do. This constant re-evaluation
is both what makes Python so flexible and sometimes so
slow. Numba doesn't tolerate this. For it to pre-compile a
function, it needs to know the type of every variable coming
in and the type of every variable it's expected to return.

To see Numba in action, we create a function to add our
arrays together, element by element. Adding the enjit
decorator at the beginning flags it for just-in-time compiling,
that is, compiling it the first time it is needed. And when the
interpreter reaches this, it briefly hands control of things to
Numba so that it can read through the function and compile
it down to optimized machine code.

from numba import njit

@njit
def add(A, B, C):
for i in range(n_sum):
C[i] = A[i] + B[i]
return C

From sum_elements_numba.py at tyr.fyi/6files

On my machine this code takes an average of just 14 ms to
add two Numpy arrays of 10 million elements together. This
is even faster than the 18 ms I saw using Numpy’s array
addition operator, which is already heavily optimized.
There's no doubt about it, Numba is a power tool.

You can see one of Numba's quirks in the way we built the
function. It takes A, B, and C as input arguments, both the
operands and the result. By handing it the return variable as
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an input argument, we are giving it a running start. Before it
even begins, we are telling Numba what the results
variable's type should be, how many elements are in the
results array, and where in memory to find the space
pre-allocated to hold it. If we had to allocate this memory
space from scratch each time we ran the function, that would
add some overhead (just a few milliseconds, but still, it's not
nothing).

The most confusing and frustrating debugging experiences
I've had with Numba have dealt with types. Either Numba is
uncertain about what return type to provide, or there is some
subtle mismatch between the type it returns and the type I
expected. Providing pre-allocated output arguments as
inputs avoids this confusion. It gives Numba well specified
templates to work from. It makes the function calls more
verbose, sometimes with a very long list of arguments, but
it's worth it. This is an area where Numba has made big
improvements in the last few years, but still it's the largest
point of friction I've come across.

Tricks and quirks like this come up more frequently when
working with Numba. Having to think about things like
types and memory allocation becomes harder to avoid.
Traditionally, Python does a great job of hiding all that from
us. When we set off on a quest to optimize our code, we
give up that protection.

I want to emphasize that passing the return argument as one
of the inputs is not strictly necessary. Someone with a better
understanding of Numba than mine would probably not
need to do this at all. But it is a technique that I have had
good luck with, so I'm sharing it with you to use as you
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wish. As we see more often when diving into optimization,
Try It and Test It, your mileage may vary.

Another Numba quirk is that the first time through the code
is always slow. When I run the simulation from the previous
chapter it takes several seconds of staring at a black screen
before the blocks render and start bouncing around. When I
turn off Numba, this startup lag goes away entirely
(although my code then runs too slow). Compiling these
functions takes a little bit of time, small though they are.

This one-time delay during the first iteration is simple
enough to handle by manually running the simulation
through one time step before initializing the Pacemaker

print("Warming up simulation")
sim.step()

From run() in sim.py at tyr.fyi/6files

This gets the pre-compilation done and out of the way before
the simulation is committed to keeping up with the wall
clock and saves you from getting a lot of angry warnings
from the Pacemaker.

Now that we have two rules of thumb (suggestions of
thumb?) it's a good time to start a list.

1. Pass variables for return arguments in as inputs.
2. Run through Numba-jitted functions once before
kicking off the program in earnest.
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For-loops. Seriously.

Execution speed is hard to guess beforehand. When we were
experimenting with Numpy arrays at first, we saw a huge
speed up going from a naked for-loop to Numpy powered
element-wise addition of whole arrays. If we modify our
Numba function to do whole array operations instead of a
for-loop, it actually slows it down considerably, to 42 ms.

@njit

def add(A, B, C):
C=A+8B
return C

From sum_array_numba.py at tyr.fyi/6files

The details of why this would be are inscrutable to me,
buried deeper in the black box than I've had an excuse to
dig. I can only speculate that the assumptions and
optimizations performed by the Numpy library and the
Numba library end up fighting each other in a
counterproductive way.

This suggests another helpful rule of thumb when trying to
speed up your code with Numba:

3. Try for-loops first.

Numba loves for-loops. Working in Numba can cause a little
mental whiplash. In regular Python, for-loops are a red flag.
Or at least a pink one. But they are Numba's happy place.
They are a long straightaway of racetrack that let Numba
really goose the pedal and see what it can do.
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This also reminds us of the cardinal rule of optimization: Try
It and Test It. (I hope this is sounding familiar by now.)
There's no way of knowing for sure beforehand what's going
to be fast. Evolving Numpy and Numba libraries, coupled
with variations in processors, mean that you and I are likely
to get different results, and your own results might change
between upgrades. There are no guarantees.

If you fail, fail hard

The decorator for just-in-time Numba compiling is @jit . It
has a built-in behavior where, if it hits a difficulty and it can't
compile, it reverts back to a more standard line by line
Python-style interpretation. This is helpful if you want to
make sure your code won't crash. One way or the other,
Python will soldier through and find a way to execute your
code.

The downside is that you don't have a good way to know
whether your Numba optimization was successful. In that
case, every compiling failure is a silent failure, the bane of
reliability engineers everywhere. It's like termite damage to
the foundation pylons. It gives no sign that anything is
wrong until something very dramatic happens, and it's too
late to do anything about it.

Thankfully we can avoid these silent failures by specifying
the option

@jit(nopython=True)

This changes the behavior of the compiler so that if it fails, it
crashes the program and spits out an error. This is a good
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thing! It means we can fix whatever is wrong before it
surprises us in an unpleasant way down the line.

This option is so popular that it has its own abbreviation,
@njit. We will always use Numba this way. If we're serious
about speeding up some code, we want to fully commit to it
and throw a noisy error if it fails.

4. Use @njit rather than @ejit.

While writing and debugging Numba-fied functions it's
often helpful to comment out the decorator, turning off
Numba, until you get the Python code behaving the way
you want. Then you can uncomment it and start debugging
all over again.

Avoid using Numba

Numba, like all potent magic, comes at a cost. The Python
interpreter provides informative exceptions and error
messages. The Numba compiler is a separate beast and sadly
not quite as mature.

Compounding that, it's performing considerably more
complex optimizations. They may span many lines of code
and logic steps. When something breaks, it may not be
immediately clear to the compiler what the cause is. It may
only know that 1) something went horribly wrong and 2) it
first noticed the problem when it was thinking about line
273. The actual bug may be on another line and you may
have to do some trial and error to even figure out what the
nature of the problem is. This leads us to our next rule of
thumb.
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5. Only use Numba where it really makes a difference.

It's worth it to isolate the lines where your program is
spending most of its time and only include those in the
Numba-jitted function.

Numba doesn't come for free, but it's also not the plague.
Debugging it can be a hassle to deal with, but it's a big
improvement over earlier generations of Numba which just
reported that there was an error somewhere in the
compilation function. Happy hunting! I want to give a huge
shoutout to the people working on Numba that are putting
in the work to make such an important tool work better and
are doing a really good job at it.

Watch your types

Here's an example of an error I got while upgrading the
Numba sections of the simulation code.

numba.core.errors.TypingError: Failed in nopython mode
pipeline (step: nopython frontend)

No implementation of function Function(<built-in function
matmul>) found for signature:

>>> matmul(array(float64, 2d, C), array(int64, 2d, C))

I was trying to @njit a function containing Numpy's
matmul() (matrix multiply) which accepts two arguments.
This error message told me that there is no such function
that accepts a 2D array of floats and a 2D array of integers.
When I commented out the @njit decorator, the code ran just
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fine. Sadly, this is a common error when working with
Numba.

The cause, as you may have already guessed, is that I got
sloppy when creating my Numpy arrays, and I created
arrays of different types. Numpy can perform matrix
multiplications on a pair of arrays of the same type, be they
integers or floats, but it can't mix types. However, we can
happily sail through life never knowing this, because it also
does us the convenience of checking the arrays' types, and if
there is a mismatch, it casts the integer array up to a float
array before performing the multiplication. This is a very
Python thing to do.

This automatic checking behavior is not at all a Numba thing
to do. Type checking takes time. Casting takes time. They
break the fast-as-possible flow that the compiler
optimizations are trying to establish. So rather than hide that
complexity from the user, Numba surfaces it with an error
that says, in effect "Get your house in order and try again."

The cleanest way I have found to do this is to explicitly
declare the types for each of the Numpy arrays in my input
arguments. When creating a new array, commands like
numpy .zeros() and numpy.ones() have a dtype argument that
lets you choose your type. For most Numpy functions, it
defaults to numpy . long, but for example

numpy . random. randint() defaults to numpy.int_. Even better,
numpy .arange () chooses its type based on its other input
arguments.

To save confusion later, you can force these functions to
create arrays to your type specifications like so.
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np.ones((n_rows, n_cols), dtype=np.long)

If you inherit a Numpy array from another piece of code and
don't have control over how it gets created, you can also take
care of the casting operation yourself. For an inherited array
A of unknown type, we can ensure it is of type long by using
the array's astype() method.

A_cast = A.astype(np.long)

This approach leaves nothing about our arguments' types to
chance and leads us to the next Numba rule of thumb.

6. Declare array arguments with a dtype (usually
numpy . long).

Here's a nice reference overview of Numpy's types, and
here's a more encyclopedic resource, although in practice the
only ones I ever touch are numpy . 1long (a.k.a. numpy.float64;
on my setup this is also Python's float.) and numpy.int_ (on
my setup this is the same as numpy . int64. Python's int type
is flexible. Its size in memory depends on how large of a
number it is trying to represent.)


https://numpy.org/doc/stable/user/basics.types.html
https://numpy.org/doc/stable/reference/arrays.scalars.html
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Don't make new arrays

On the theme of leaving nothing to chance, I've found it to
be simpler to avoid creating any new arrays within the jitted
Numba function. Numba makes a valiant effort to guess
what type the new array should have, but somehow I still
manage to confuse it more often than not. Creating new
arrays can be the source of a lot of confusing type-related
bugs.

7. Avoid creating intermediate Numpy arrays.

It's also not great for performance. Creating a new array
means negotiating for space in memory with the computer's
processes that supervise that sort of thing. It takes a little bit
of time and if the code is trying to do it repeatedly, it can
really slow things down.

If it simplifies the code a great deal to have an intermediate
array to hold results, an alternative approach is to create that
array outside the Numba-jitted function and pass it in as
another argument. It's a good solution because it means that
space in memory is set aside and recycled each time the
function is called. There is no need to create a brand-new
array from scratch each time.

Thinking about where arrays sit in memory and how many
bytes each element occupies are usually things that Python
(and Numpy) hide from us. For our convenience and sanity
these details are taken care of out of eyeline. But when we
get serious about optimization we can no longer afford the
luxury of ignorance. The harder we push performance, the
more leaky the abstractions become, and the more we are
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forced to acknowledge the meshing of the gears that make
our computational engine turn.

Don't use Numpy functions

Taking a couple of the previous suggestions together-3) try
for-loops first, and 7) don't create intermediate Numpy
arrays—it makes sense to avoid using Numpy functions to
operate on arrays entirely. For example, adding two arrays
with an addition symbol, +, aliases to Numpy’s add()
function. This violates both rules by skirting for-loops, and
by creating a new Numpy array to hold the result.” To be
extra cautious, we can extend this rule.

8. Avoid operating directly on Numpy arrays or using
Numpy functions.

There are a lot of convenient functions in the Numpy library,
like trigonometric functions for example. But most of these
are also available in Python's native math library, and most of
those that aren't can be reproduced in a few steps and some
determination. We've already seen that Numpy and Numba
have somewhat different goals and approaches and can
contend with each other. Restricting Numba functions to
Python native math operators keeps it on its home turf.
These are the functions that it's better at optimizing.

% Yes, it's true that you can pass an empty output array to Numpy
using the out argument, and it will be populated with the result.
This ameliorates the performance hit a little bit. Now stop
interrupting me with facts while I'm trying to make a point.
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Avoiding Numpy functions within Numba functions is also
a good way to avoid quirky interactions and unanticipated
behaviors. Introducing one library adds complexity enough.
Bringing in two of them and having them interact
occasionally leads to some deeply frustrating experiences.

Take baby steps

Another development trick I have found invaluable in
writing Numba-fied functions is building them up
incrementally. I create a stub of the function, add just one or
two lines, and check to make sure it runs, even though I'm
certain it won't be giving correct answers yet. Because
Numba error messages can be cryptic and hard to localize, it
helps to have less territory to cover. It's a lot easier to spot a
bug in two lines of code than in twenty.

Then after the first two lines of code compile and execute, I
add two more. This way I know that any new errors that
occur are probably due to the most recently added code.

9. Build Numba-jitted functions incrementally,
testing often.

I confess that sometimes I get cocky and try to write a long
Numba-jitted function in one go. Sometimes I get lucky, but
usually that just ends up reverting back to the incremental
strategy, with me commenting out all but my first two lines,
and then gradually building the function up from there.
Incremental development of this sort is a useful approach in
general for any kind of code, but with more finicky
languages and cryptic error codes it becomes invaluable.
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Matrix multiplication

The one apparent exception to all of the above rules is matrix
multiplication, the repeated application of the dot product
across the rows and columns of a couple of two dimensional
arrays. This particular operation comes up so often in
computationally intense applications that it has become the
standard by which all numerical computation packages are
measured. It's the backbone of deep learning and modern
machine learning methods. It is the problem for which an
entire class of silicon hardware, graphical processing units
(GPUs), have been optimized to solve. Because it has gotten
so much attention at every level, there are a lot of tricks
available to Numpy for speeding up matrix multiplications,
and because that is an important measure of success it uses
all of them.

There is a straightforward three-level for-loop approach to
computing matrix multiplications, but there have been
theoretical and algorithmic discoveries of more efficient
ways to do this. On top of this, Numpy cheats and splits the
computation across multiple threads if the arrays are large
enough to benefit from it.

The bottom line is that, even if we don't understand how or
why, it is enough to know that vanilla Numba will never
beat Numpy for straight up matrix multiplication.

But wait! The Numba team has helped us out even here.
There is another argument we can pass with the jitting

decorator.

@njit(parallel=True)
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By using this and swapping in Numba’s prange function for
range, Numba also can split its computation across multiple
threads. Not only does it keep pace with Numpy, but on my
machine it’s almost twice as fast. On a comparison test in
matmul_comparison.py I get

Vanilla Numba matrix multiplication : 579 ms
Numpy matmul(): 1270 ms
Numba matrix multiplication with parallel=True: 298 ms

Results will depend strongly on the specifics of the
computation and the platform, so Try It and Test It. As
always. With everything.

This rounds out our list of rules. They are definitely not firm
or important or inviolable enough to be considered laws or
commandments, so I present:
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The Ten Suggestions

for working with Numba

Consider passing in pre-allocated return variables as

input arguments.

Maybe run through Numba-jitted functions once
before kicking off the program in earnest.

Try for-loops first, if it's not too much trouble.
Think about using @njit rather than @jit.

If you're OK with it, only use Numba where it really
helps.

Possibly declare array arguments with a dtype
(usually numpy . float).

Don't create intermediate Numpy arrays, if you can

manage it

Avoid operating directly on Numpy arrays or using
Numpy functions.

Weigh the benefits of building Numba-jitted
functions incrementally, testing often.

If you Numba-fy matrix multiplication, you could
use parallel=True. Or just leave it to Numpy.
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I expect that every one of these suggestions will have
exceptions and corner cases where they don't apply. There
will be platforms, perhaps, where they don't hold true and
particular computations where it makes sense to break them.
But my hope is to provide a reasonable starting place if you
are new to Numba and want to hit the ground running. As
always, in optimization the one cardinal foundational law
remains:

Try It And Test It

As an endorsement for the Try It and Test It methodology, I
have to confess that I didn't know about half of these
suggestions before I started writing this chapter. I would
write a paragraph, create some sample code to verify what I
just wrote, be surprised by the result, and then do some
more investigation. This led to several new and important
insights, particularly about how Numba and Numpy fight
each other.

As a result, I revamped the simulation code. My rough
estimate is that the code as a whole is now 50% faster. The
Numba-decorated functions themselves are at least twice as
fast.
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Here's a sample of what the new code looks like.

@njit

def body_interactions_numba(
f_x_a, f_x_b, f_y_a, f_y_b,
k_a, k_b, r_a, r_b,
x_a, x_b, y_a, y_b,
v_x_a, v_x_b, v_y_a, v_y_b,
sliding_friction, inelasticity,

epsilon = 1e-12
for i_row in range(x_a.size):

for j_col in range(x_b.size):
d_x = x_a[i_row] - x_b[j_col]

d_y = y_ali_row] - y_b[j_col]

d_v_x = v_x_a[i_row] - v_x_b[j_col]
v_y_a[i_row] - v_y_b[j_col]

d_v_y

r_ab = r_a[i_row] + r_b[j_col]
k_ab =1 / (
(1 / (k_a[i_row] + epsilon)) +
(1 / (k_b[j_col] + epsilon))
)
distance = (d_x**2 + d_y**2) ** 9.5 + epsilon
compression = r_ab - distance
compression = max(@, compression)
f_ab_contact = k_ab * compression

f_norm = f_ab_contact / distance
f_x_ab_contact = f_norm * d_x
f_y_ab_contact = f_norm * d_y

f_x_a[i_row] += f_x_ab_contact
f_x_b[j_col] -= f_x_ab_contact
f_y_a[i_row] += f_y_ab_contact
f_y_b[j_col] -= f_y_ab_contact

From body.py (comments removed) at tyr.fyi/6files


http://tyr.fyi/4files
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Notice the complete lack of any Numpy functions within. It's
just for-loops and element wise operations. It has a lot of
intermediate variables, but they are all floats and integers, no
numpy arrays. The only arrays in play are the ones passed in
when the function is called. It's slightly less readable, but to
my eye it's not bad.

I have mixed feelings about this. On one hand, I'm thrilled
about the increase in efficiency. This expands the capabilities
of the simulation quite a bit! And it makes more efficient use
of my resources! And by some measures, it's more
transparent, and easier to explain! It's a huge engineering
win.

On the other hand, I sat down to write this thinking that I
had some experience I could share that would be helpful to
folks, only to discover that I didn't know nearly as much as I
thought I did. This is uncomfortably humbling, but I've
made my peace with it. Consider it an extra fervent
endorsement of the Try It and Test It method. There is no
magic here, only trial and error. Take this as a license to
question and test anything an expert has ever told you about
optimization. Run the numbers yourself. See what results
you get. And if you want to extend this to a more general life
lesson, that is entirely up to you, but  won't try and talk you
out of it.
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Are we done yet?

I feel like we should be done by now.

Other paths to optimization

This is about as far as it makes sense to take our
optimization efforts. The optimization dilettante (such as we
are) can invest enough time to vectorize code and, where
necessary, Numba-fy it. After that things get much more
expensive and time consuming. But it's worth at least being
aware of the next levels of seriousness.

If you are prepared to dedicate an engineering team to
speeding up your calculations, it means that you have a few
million dollars to burn and are probably making the same
type of calculation many times over. If it is a one-of-a-kind
calculation, say, representing some novel physics in a
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simulation, that will probably lead you down the path of
hyperspecificity. Common strategies include writing low
level C code for very specific high-performance computers.
Specialized simulations for large scale weather and high
energy physical phenomena fall into this category.

You can also invest time in theoretical and mathematical
work to simplify the problem. It's often possible to create
approximations that are close enough to be useful, but save a
lot of math steps. One of my former coworkers had spent
time as a physics postdoc and used this approach to model
molecules using the Schrodinger Wave Equation. The
simulation got unwieldy in raw form after just a few atoms
were added to the molecule. He was able to extend it to
much larger molecules by artfully simplifying the
representation of the equation, keeping only the most
essential aspects.

If your problem reduces to a common calculation, such as a
matrix multiplication, and your goal is to perform it many
times as quickly as possible, then you can go a different
route and push for brute force scaling. The first line of attack
in scaling is parallelization. CPU clock speeds have topped
out in the last few years due to the limitations of basic
physics, but the number of processors available has steadily
grown. If you can find a way to chop your computation up
into smaller, bite-size jobs and farm them out to separate
processors then you can scale them up almost arbitrarily.
You are only limited by the overhead it takes to parcel the
task into subtasks and communicate those subtasks to each
of the participating processors.
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We are already doing a lightweight version of parallelization
in our code by having the simulation run on one processor,
while the visualization runs on another. This is a strategy
we'll extend in future chapters when we integrate other
components that require heavy pre-processing and other
algorithmic building blocks that can be computationally
demanding in their own right.

Monitoring

Our cardinal rule of Try It and Test It isn't limited to when
we first write the code. Interesting programs change over
time as they run. In the case of our simulation, some
configurations are more computationally demanding than
others, when bodies are in close proximity for example. Any
code that makes use of a stream of data will be encountering
new and unforeseen states on a regular basis. Any programs
that accept human input or feedback signals, like human
directed reinforcement learning to choose an example
completely at random, have the additional complexity of
dealing with an entirely unpredictable, and sometimes
mischievous or adversarial, human being on the other end.
A program that behaves well under development and
testing conditions may run into difficulties later when
running for real, also known as running in the wild or in
production.

Once a program or system is running in production, the
problem of tracking gets renamed monitoring. It starts to
look much less like a single measurement, and more like a
continuous observation process. Our simulation has an
example of this already. At each iteration we have been
checking whether the simulation iterations have taken more
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than their allotted time. When they do, we have been
reporting this with a text message in the console. This is a
primitive form of monitoring. It suraces an important
condition that we need to be aware of, but it's not something
we worry about so much that we feel the need to shut down
the program.

It's easy to lose one's direction when setting up monitoring.
There is just so much information and so many different
ways to show it. It's useful to have a point of focus so as to
avoid losing your bearings. For me, this comes in the form of
a question I'm trying to provide the answer to. For the
physics simulation this question is clear: Is the simulation code
taking too long to compute? In order for our simulation engine
to claim real time performance, it has to simulate the physics
that occurs during one clock cycle in less than one clock
cycle worth of time. If it can't manage this, it falls behind.

This is a good question because it's something we can
measure. It is surprisingly easy to pose questions that are
actually unmeasurable. If instead we had asked a question
like Is the simulation running smoothly? or What is the health of
the physics engine? we would've had to take additional steps
to figure out what we meant by those terms and how to
reduce them to numbers.

What number to report?

So far, we can answer the question of whether the simulation
competitions are running fast enough with a yes or no. Or, to
be more precise, with a lot of yeses and nos. Every
simulation clock cycle we will have another chance to
measure whether the computation finished in the allotted
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time and so we wind up with 1000 yeses and nos per second.
That's more than we can easily digest, and it raises the
question of how to communicate that volume of information
to a human with limited reaction time and attention span.

It's helpful to play the What if? game when deciding what to
show and how to show it. What if a single clock cycle ran too
long? Would I try to speed up my code? Modify the
simulation? Or would I write it off as an anomaly? There are
a lot of things that could cause a single cycle to go over time,
and most of these have little bearing on the performance of
the simulation, so the right answer is to do nothing. A single
time step's violation is inconsequential, and we wouldn't
want to do anything in response if it occurs.

The implication of this for monitoring is that we don't need
to worry about reflecting every single overtime violation.
But it raises the follow up question of How many times does
the simulation have to go overtime before we worry? 1% of
cycles? 10%? 50%?

This is a tough question to answer, and the very fact that it is
a tough question to answer is a useful signal. If you find
yourself in the position of picking arbitrary thresholds out of
a hat, it usually means that you haven't quite found the right
thing to measure yet.

Let's take a step back and consider the situation more
carefully. The thing that we care about is how far the
simulation has deviated from real time performance. A very
small deviation suggests a different course of action from a
large deviation. We don't just care about whether a
computation went over time, we also care about the amount
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of the overtime. And we don't just care about the amount of
overtime in a single clock cycle, we care about the total
amount, added up over time. Thankfully this is a thing that
we can directly to a number on. It's captured in the number
of seconds of deviation from the wall clock.

The process of asking If we had the answer, what would we do
with it? is immensely helpful in focusing our monitoring
efforts. We can refine this by playing the What if? game
again. What if we see this simulation has fallen behind?
What will we do? Maybe close a web browser that's
competing for resources? Or maybe revisit the code and do
some more optimization? Or maybe ignore it and let it run?

Which of these options we choose will likely be influenced
by whether the deviations are growing or shrinking, and
how fast, whether they are an isolated blip, or a sustained
deficit. To get at this, we will need to know not just the wall
clock deviation at the current time, but also a bit of history.

Now we're really getting somewhere. The next question to
answer is how far back in time do we care about? We are
focused on correcting any ongoing deviations, rather than
summarizing the long-term history. For this it's probably
enough to look at the most recent data, say, one minute's
worth.
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One value to represent them all

That's still 60,000 data points if we are working with a 1,000
Hz simulation clock. We can afford to do some aggregation
and show the deviation once per second. That will be
frequently enough to let a human observer see anything
hinky taking place and address it. But this raises the
question of how to aggregate the 1,000 timing measurements
gathered during a second into a single number that
represents them all.

There are several options open to us, and they each tell a
different story. The most popular aggregation method is
averaging. Averages are efficient to compute and have a nice
intuitive interpretation. It's hard to go too far wrong with an
average. However, for the question we are trying to answer
it's worth thinking through the case where, if the overtime
deviation were high for a quarter of a second but zero for the
other three-quarters, how would we want to represent that?
If we represent it with the average, then it will appear that
the deviation was consistently low for the entire second.
We're missing out on some of the information that we care
about. A brief period of high overtime deviation is of
interest. Its appearance suggests that perhaps there's a
problem that needs addressing.

Another alternative for aggregation is the median. It is
excellent for when you want to ignore outliers and focus on
typical values. Unfortunately, in our hypothetical case where
the deviation is high for a quarter of a second, the median
would be zero, completely masking the phenomenon we're
hoping to capture. The median is clearly not the aggregation
method we want to use.
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The other extreme is to be deliberately sensitive to outliers
and take the maximum value. Here we put the absolute
worst case available to us front and center and let it be the
representative measurement for the entire second. This
approach is not wrong, but it's definitely harsh. Coming back
to the specifics of our use case and the question that we are
trying to answer, this might be overly sensitive. There are
lots of things that can cause a momentary glitch for a few
milliseconds that is quickly resolved. This is nothing that is
likely to be even perceptible to a human and would certainly
not degrade their experience. There's no need to be quite this
brutal.

A good middle ground between the median and the
maximum is to choose a percentile, say the 90th, as a
representative value. This is a good way to answer the
question When things are rough, how rough do they get? It also
allows for very short term blips and outliers to slip by
without disproportionately focusing on them.

What we're bumping up against here is that the thing we
want to measure is not a fixed value. It's something that is
constantly changing, and we have so many measurements of
it that it doesn't make sense to consider them individually
anymore. Instead, they are much easier to interpret as a
distribution, a spread of values between some high and low
and everything in between.

The challenge is that no single summary statistic tells you
what the shape of the distribution is. The median only tells
you the point that lies between the bottom half and the top
half of your measurements. It says nothing about how those
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are grouped. Similarly, the 90th percentile only tells you the
point above which sit 10% of your measurements. To get a
richer sense of the distribution, it would be useful to look at
a whole set of statistics. One common way is to look at the
10th percentile, the 20th, etc. up to the 90th, that is, to look at
each decile. This is a helpful way to get a sense of the overall
shape of the distribution.

When we are more concerned about one end of the
distribution, as is the case with overtime deviations, then we
can take a different approach. Here, we want to focus on the
higher end, just how far out of bounds it gets when things go
off the rails. The 90th percentile is a great place to start
because as we mentioned, it's a good way to represent the
largest 10% of the measurements. It's used often enough that
it even has its own abbreviation, p90, for labeling it on plots
and tables. It's also abbreviated as a decimal, 0.9. If a
simulation has no deviation up to the 90" percentile, then we
can say it's 90% reliable, or alternatively, it has one nine of
reliability. It's also fairly common to look at system reliability
at the 99" percentile (p99 or two nines) and the 99.9"
percentile (three nines). Sometimes you can catch system
reliability engineers (SRE's) bragging about five nines and
six nines. After a while it stops being very meaningful. Seven
nines means your system was down or out of specifications
for three seconds a year. We're not sending anyone to the
moon or protecting nuclear launch codes, so tracking our
simulation's reliability at one nine is adequate.

Making it into a movie

Now that we've decided what numbers we need to
represent, the next step is to turn that into an animated plot.
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It takes a little bit of doing to make this happen, but luckily,
thanks to the investment we've already made, we have the
tools to do it. In Chapter 3 we worked out how to create new
processes. In Chapter 4 we worked out how to create
animations. What remains is to tweak these capabilities for

our new use case.

The first step is to create a new process to handle the
monitoring. Our animation process is already going flat out,
and we want to keep our simulation process as lean as
possible. Creating an independent monitoring process is a
good way to do this. Most of this implementation can be
seen in dash.py. It follows the same pattern we set up for
creating the animation, using a Frame object that gets regular
updates, courtesy of a run() function that gets called to start
the process. run.py also gets updated to set up the
monitoring process and the communication Queue between
it and the simulation. sim.py incorporates the extra Queue
and sends the timing measurements over it to dash.py. And
config.py gets a whole slew of new parameters to customize
the appearance.


https://tyr.fyi/3pdf
https://tyr.fyi/4pdf
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The new process diagram shows three processes connected
by two Queues: one that connects the simulation to the
visualization and one that connects the simulation to the

monitor.
Visualization
viz.py
Simulation
sim.py
Monitoring
dash.py

There's not much in dash.py that is conceptually new, but
there are echoes of existing themes that bear repeating. One
of these themes is extracting hard coded parameters to a
configuration file. There are a lot of tweaks and
customizations and hand-picked numbers and colors that
can go into making a plot. I have tried to pull all of these out
in order to keep the code as cleanly organized as possible. It
saves a lot of hassle later when I want to go in and change
one little setting. It's nice to have separate files for what the
program does and others for the specifications of the fine
details of how it does it. It's not always possible to separate
these out cleanly, but I've found it's worth the effort to try.
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Another theme we're revisiting here is that platform
independence is hard. Now that we have two Matplotlib
animations, running in two separate windows, it's nice to be
able to place them so they're not on top of each other.

#EI Q=L B

The function to control the placement of the window within
the screen looks like this

mngr = plt.get_current_fig_manager()
mngr.window.setGeometry(x_left, y_top, width, height)

where x_left the distance in pixels from the left edge of the
screen to the left edge of the window, y_top is the distance in
pixels from the top of the screen to the top edge of the
window, width is the horizontal extent of the window in
pixels, and height is the vertical extent of the window is
pixels.

It works great, but this solution is specific to the QtAgg
backend for generating windows and user interfaces. There
are other ways to do this for other backends (like impympl,


https://matplotlib.org/stable/users/explain/backends.html

How to Train Your Robot

TkAgg, and wxAgg) but writing and testing all of those
variants was not where I wanted to spend my time. While I
warmly invite anyone who wants to extend the code to
include these other backends, for now this will be yet
another instance of platform specific development.

With the window size and location hard coded, we can focus
on its contents. All we really need here is a single line
showing the recent history of overtime p90 values. Plotting a
line is the most basic of tasks in Matplotlib. It could be done
in just one line of code, so the fact that I chose to do it in 55
lines deserves some explanation.

Matplotlib has a lot of reasonable defaults for how it
displays and labels plots. I enjoy and take pleasure in
adjusting the fine details until it looks just right to my eye.
As a result, the plot generating code in dash.py is more
verbose and contains more configuration parameters than it
absolutely needs to. This is an aesthetic choice, a personal
preference. Please don't feel like it's important to do it this
way.

That said, I don't want to diminish the importance of good
graphical design. A carefully constructed visualization will
answer a question for the viewer, almost without them
having to think about it. There are some small touches I've
made here to eliminate as much cognitive burden as
possible. One of these is to convert the y-axis into a
percentage. The threshold that we are concerned about
crossing is 100%. I removed the need for the reader to
convert from milliseconds to interpret the result. Another
small touch is to add a shaded area for the region above
100%. Intuitively everything below this is "in the clear".
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Crossing into the shaded zone, represents a transgression in
the literal sense, and naturally draws the eye. I've also tried
to emphasize the information we care most about. I made
supporting lines and explanatory text smaller and dimmer to
help them fade into the background and to call attention to
the line showing performance. Wherever possible, I have
removed lines and text altogether. I've also tried to keep it
simple and monochrome. This plot has one job, to answer
the question of whether our simulation computations are
taking too long. Anything that doesn't directly contribute to
that job is a detraction.

Customizing Matplotlib is not particularly intuitive. There
are a whole collection of special codes and incantations
involved. I've created a set of posts that I reference often
when creating plots, especially when it comes to axis lines,
ticks and tick labels, text, axis layouts, and drawing

olyeons.


https://e2eml.school/blog.html#133
https://e2eml.school/matplotlib_framing
https://e2eml.school/matplotlib_ticks
https://e2eml.school/matplotlib_text
https://e2eml.school/matplotlib_framing
https://e2eml.school/matplotlib_patches
https://e2eml.school/matplotlib_patches

How to Train Your Robot

The Dashboard

A regularly updated performance plot of this nature is a
common tool for monitoring. It can be a lot more intuitive
than printing numbers in the terminal and looks better in a
PowerPoint presentation. It's typical to see a handful of these
plots in one window, in which case it's referred to as a
dashboard, evoking the collection of dials and status lights
on the dashboard of a car.

This is a good time to pronounce a Surgeon General's style
warning about dashboards. They are addictive. A little bit of
visibility into something that was a mysterious black box is a
taste of power. Once you get a small hit, it's natural to want
more. At every step along the way of this analysis, we
decided a list of things that we weren't going to show. What
if we made plots for all those as well? What if we included
lines for p50 and p99? What if we plotted the life history of
these values, rather than just the most recent 60 seconds?
What if we broke out the computation time into the time
spent on Numba-jitted functions and the time spent on
everything else?

All of these are entirely feasible to do. We have the tools and
the computation budget to pull it off. So why wouldn't we?
There are some hidden costs here that are easy to ignore
until too late. The most fundamental is that not all
information is equally useful. We adhered to one guiding
principle when designing this plot—clearly answering a
question. What do we need to know in order to decide when
to take corrective action? How would we know when
computation was becoming a big enough bottleneck that we
needed to do something about it? The focus on action, on
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decision, on doing is the important part. We used the What
if? test to gauge this. What action would we take if we could
measure this? If the answer is "we would not do anything",
then arguably that's not a piece of information we actually
care about. The information that prompts action is what's
most important.

Measuring things that are curiosities brings a superficial
kind of satisfaction. It happens often enough that these
measurements have their own name: vanity metrics. One can
measure them, watch them go up or down, feel good about
any improvements, and explain away any degradations.
However they evolve, they are not directly tied to any
decisions or substantive evaluations we might make.

A real danger of these vanity metrics is that they can obscure
the important things we want to monitor. Human attention
is limited. If we see one plot on a page, it will get all our
attention. If we see a hundred plots on our page, our
attention will be split a hundred ways. Every plot that gets
added draws attention away from all the others. If it doesn't
add substance, it squanders our very limited attention
budget. Sticking to carefully designed metrics that clearly
contribute to decision making ensures that our attention gets
spent on the right things and that important issues don't slip
through under the radar.

An even bigger cost can be analysis rabbit holes. Our
curiosity can be our undoing. If a line on a plot suddenly
jumps up or down, it's natural to wonder why, to form a
hypothesis, and to feel an itch deep in our brains until we've
tested it.



How to Train Your Robot

Just to be clear, this process of internal question and answer
when looking at plots is a beautiful thing. It's just something
that's supposed to happen a lot earlier in the process. During
data exploration, when first building a system and
experimenting with it or when investigating a new collection
of data, there is no better way than to plot the data in
different combinations and wonder to oneself about the blips
and trends that emerge.

There is absolutely nothing wrong with the exploration
process itself, but that's not what monitoring is for.
Monitoring is for the single purpose of raising awareness
when a problem arises, and anything that distracts from this
is defeating the purpose and degrading the quality of the
dashboard.

Dashboard-driven exploration becomes an even bigger time
suck once other people get involved. At work we have a lot
of intelligent and curious colleagues, and it's natural for
them to look at a plot and ask questions. And if the person
asking the question happens to be your boss, or their boss, or
their boss, it becomes very hard to say no when they ask you
to investigate it. All the more reason to not open the lid to
Pandora's box any more than a crack.

Another way that dashboards can get out of control is when
you try to extend them not just to identify when problems
occur, but to give you all the information you would need to
diagnose a problem when it does—to learn not just when
action is necessary, but to help you decide precisely what
that action should be. The difficulty is that it's impossible to
know what you will need to diagnose a problem until you
actually see the problem itself.
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Consider our overtime monitor. Depending on whether it is
consistently high, or it gradually climbs, or it makes a
sudden jump into overtime territory, the follow up questions
would be very different. We could in theory try to foresee all
the ways in which it might fail, then create dashboard plots
to tell us exactly what we would need to know to correct
each of those.

This prognostic diagnostic approach is appealing, because it
feels like we're doing good engineering. We're investing time
now to save time in the future. But it never works out quite
that cleanly. It's hard to foresee every eventuality, and we
almost always end up having to do additional ad hoc
investigation to pinpoint the source of a failure or
degradation. In addition, there are cases that may never
occut, so by pre-computing them and plotting them before
they are needed, we are doing unnecessary work. Then, as
mentioned at length a few pages ago, we would be carrying
around the additional cost of dashboard clutter, obscuring
the really useful plots that notify us when something goes
wrong. The most useful thing a dashboard can do is help us
avoid silent failures, to alert us to the fact that something
needs attention. The act of actually fixing whatever went
wrong is a separate piece of work that we will not be able to
dodge by adding plots.

Interpreting the dashboard

To show how we might use this in practice, we can simulate
some concerning behavior. Thanks to our aggressive
optimization earlier the simulation has no trouble
completing all of its computations and keeping up with a
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1,000 Hz simulation clock. To push its limits I have to ratchet
up the simulation clock to 10 kHz. And that means that each
simulation clock cycle only lasts for 100 ps. (In case you can't
tell, I'm feeling very pleased with myself.)

With this more stringent timing constraint, we can see that
the simulation does in fact cross 100% line. It tends to hover
around the 80 to 90% range, but occasionally spikes to 150
and even 200%.

So what does this mean for us? This plot is supposed to
directly inform actions and decisions. How do we translate
this to an action?

It's still not a cut-and-dried if-then situation. If it were an
absolutely clear decision like that, we could hard code it and
have the program throw an error every time the line crossed
100% and shut everything down. But that's not the case.
When the line crosses 100%, it is supposed to draw our
attention rather than take some automatic action. The best
thing to do at that point is to take a careful look and start
asking questions. Is it crossing the hundred percent line by a
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little or by a lot? Are the crossings brief or sustained? Is there
any noticeable degradation in the simulation? Is it glitchy or
sluggish? Do the incursions seem to be getting more
extensive over time?

These are subjective judgments, best made by a human eye
and mind. They require some focus, some thought and
consideration. Making these evaluations is cognitively
expensive. Human attention, both ours, our teammates, our
customers and users, is one of the scarcest and most precious
resources we will manage. Asking someone to keep an eye
on the dashboard and think carefully about any anomalies is
not a request we make lightly. We show our respect for the
individuals involved by the careful thought we put into
choosing what to plot, and even moreso, what not to plot.
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Did someone call for a watchdog?

Shut it all down

One last thing: Coordinated process shutdown. In Chapter 5
I mentioned that when one process dies, I have to manually
shut down all the other Python processes with a pkill
statement at the command line. During the course of writing
this chapter, I finally got tired of that and wrote a cleaner fix.

It turns out that gracefully coordinating the shut down of
multiple processes is trickier than I had expected. It's not too
difficult to set up the top level runner run.py to watch all of
the child processes and, if there's a problem with one, close
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them all, then shut itself down. But that doesn't handle the
case where the runner itself runs into trouble and gets shut
down or crashes first. I even tried adding another process
whose sole function was to watch the runner, and if it had
difficulties, close the runner down, then all of the child
processes, then itself. That kind of worked, but there were
still odd corner cases where it didn't catch everything. Also, I
was unsatisfied with the extra overhead and system
complexity I needed to add.

Part of the challenge comes from the fact that handling
Queues is complicated. I'm still fuzzy on a lot of the details,
but it appears that if a process is killed while it is holding a
lock on a Queue, it can enter a zombie-like state where it is
waiting around for closure that will never come.

There are different levels of demandingness that you can use
when terminating a Linux process. There is SIGINT, a signal
to interrupt, which asks the process to stop and gives it
plenty of opportunity to finish up whatever it was working
on. It's like a teacher requesting that students taking an exam
wrap up the paragraph they are writing. There is also
SIGTERM, a signal to terminate, which is a little more
insistent. It is the classroom equivalent of "put your pencils
down now, and close your test booklet." It lets processes
follow whatever instructions they have for gracefully
shutting down. Then there is a SIGKILL, a signal to kill. This
is like yanking the test booklet away from the student
mid-sentence. It's not graceful, but it definitely stops
everything that's going on.

My best understanding is that when a process receives a
SIGTERM while communicating via a Queue, that
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connection makes it impossible for it to finish what it is
doing. So while the process is technically following
instructions, it never shuts down entirely. It just sits there,
pencil in hand, staring at the page, racking its brain for a
next word that will never come. In our case, we are not too
worried about graceful shutdowns. We just want everything
to turn itself off. In our child processes, we can do this with
os._exit(). In the runner process we can take advantage of
the sys.exit() function call. It builds in the termination of
all the child processes. It is able to handle the Queues
gracefully, I assume because it has access to everything at the
top level and can terminate the processes on both ends of the
Queue.

The design that ended up being the most effective, and in
my opinion the most elegant, is a multi-way deadman
switch pattern that resembles a suicide pact. Every child
sends a regular heartbeat to the runner, and the runner in
turn sends a heartbeat signal to each child. If any of those
heartbeat signals stop coming, the recipient assumes that the
process on the other side has died, and terminates itself. If a
child should crash, the runner will self-terminate, which
then precipitates terminating the rest of the children. If the
runner should crash, each child will notice the interrupted
heartbeat and terminate themselves.
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This pattern proved itself to be quite effective. It is an
interesting case study, where the goal is to make the system
fragile in just the right way. This runs contrary to the notion
of graceful degradation, where if one part of the system fails,
the rest soldiers on in some way. Here the goal is
catastrophe, where if one part of the system fails the rest
follows quickly and the whole structure crumbles to the
ground.

The net result of all of this is that when something crashes, I
don't have to manually kill the rest of the Python processes.
It's a small win. I think it's worth it. But it's not without cost.
run.py is now considerably longer and more complex.
Rather than there being two inter-process Queues to create
and manage, now there are eight. There is also an additional
block of code in what used to be a very streamlined run()
function in each child. This is necessary for sending
heartbeats to the parent runner and monitor its heartbeat to
make sure it is still running. On the upside, it doesn't require
the creation of any new files or tools, and it is relatively easy
to explain: the parent holds a deadman switch for each child,
and each child holds a deadman switch on the parent.
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This is also an illustration of how engineering needs can
evolve over the course of a project. Earlier I said that it was
premature to engineer a coordinated shutdown procedure.
But with the addition of a little project maturity, anticipating
the addition of more processes in the next few chapters,
losing patience with the extra manual step, coupled with a
festering curiosity, now feels like the time to build a solution.
All of these factors are subjective and are certainly debatable,
but here I get to exercise my privilege as sole developer and
go with my gut.

One thing I haven't done here yet is to include some
user-initiated keystroke to shut things down, like hitting the

q" key. That's because I am saving that for the next chapter.
Stick around. Things are about to get good.
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