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Making Animations
with Matplotlib

Chapter 4
In which we re-create the moving picture.

First, an example

This oscillating ball demonstrates the most important tricks
we’re going to talk about in this chapter. Take a minute and

watch the video at tyr.fyi/4lissajous.
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Here's the code behind it. (Don't worry about understanding
it yet. We'll come back to it, one bite at a time.) This and all
the rest of the code for this chapter is in a git repository at
tyr.tyi/4files. Download them and run them for yourself!

import numpy as np
import matplotlib.pyplot as plt
from pacemaker import Pacemaker

pacemaker = Pacemaker(24)

fig = plt.figure(figsize=(4, 4))

ax = fig.add_axes((@, 0, 1, 1))

lines = ax.plot(@, @, marker="o0", markersize=16)
ball = lines[9]

ax.set_xlim(-1.1, 1.1)

ax.set_ylim(-1.1, 1.1)

plt.ion()

plt.show()

for i in range(160000):
X = np.sin(i / 10)
y = np.sin(i / 9.01)
ball.set_xdata(x)
ball.set_ydata(y)
fig.canvas.flush_events()
pacemaker .beat()

lissajous_ball.py

At first glance, the video is nothing special-a blue ball
moving smoothly through shifting ellipses. But the
clockwork behind it has all of the cogs that we'll need to

make far more sophisticated animations.

The ability to draw, move, redraw on a regular cadence will
let us represent robot arms flailing in all their configurations.
It will let us draw a robotic pup wandering around its world.


http://tyr.fyi/4files
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It will let us turn the abstract machinations of learning
algorithms into movies. With this groundwork in place we'll
be limited only by our patience and imagination.

Caveat

I have to start with a big disclaimer. This chapter is not about
how to do Animation with a capital A. It’s very specifically
how to make lines and shapes bob around on a screen in a
Python-friendly way that will help us do robotics. There are
plenty more sophisticated tools for doing all of this. If you
were going to create a Studio Ghibli-style animated movie,
you would use a different tool. If you were creating a user
interface for a mobile app you would use a different tool. If
you wanted to create interactive animations on the website,
you’d use a different tool. If you wanted to do large scale,
physically realistic object deformation, collision, or fluid
dynamics you would use a different tool.

The approach that we’re going to work with here is only
special because it is the simplest way I could find. This is
nothing more than a janky homespun animation tool. The
reason to build our own here, rather than going with
something out of the box, is that it gives us more
transparency and control. We can see exactly what it’s doing
at any moment. When it doesn’t work as expected, we can
dig into it and find out why. We can be certain that it’s not
going to trip up any of the rest of the robotics computation
we have running because we're going to design it from the
ground up. Also, we avoid building in any dependencies on
large animation platforms.
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This is a good trade-off for us, particularly if we’re only
planning to take advantage of a tiny sliver of what bigger
platforms can do. And my hope is that by basing it on some
widely available Python tools, Numpy and Matplotlib, it
will run on almost any computer. That’s not always the case
for animation software. So we’re not doing this out of pure
hubris, or the desire to reinvent the wheel. It just so happens
that the exact thing we need isn’t out there yet, and so it’s
worth our while to build it from scratch.

Why Animation for Robotics?

Aside from being fun to look at, animations are an
invaluable tool for working with robots. For simulated
robots it helps to see what’s going on and how it’s playing
out in real time. I've spent way too much time looking at
joint angles, printed in ASCII, scrolling rapidly down the
console. As soon as I embraced the need to make
rudimentary animations, the answers to my questions
practically popped out of the screen. We’re working with
things that are changing over time and moving around in
our world (or a virtual world that resemb]es it). Putting
them in an animation lets us tap into our highly specialized
visual hardware, neural circuitry that is designed to make
use of exactly this type of information.

Even when working with physical robots, being able to
animate other things that we can’t see, like contact forces
and derived features, greatly enriches our mental model of
how everything is working. It can also be instructive to have
a physical robot and simulated robot side-by-side, one
mirroring the other. Any difference between the two
becomes immediately apparent. It can bring to light subtle
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bugs, like encoder failures, wheel slippage, calibration
errors, and sign errors very deep in our calculations.

Running animations will take full advantage of our building
blocks so far: the pacemaker from Chapter 2 and
interprocess communication through Queues and the
multiprocessing package from Chapter 3. Animations are
nothing more than a sequence of images updated at a fixed
rhythm with subtle differences between them.

Frame Rate

The rhythm matters a lot. If it is uneven the animation looks
clunky and sloppy, but as long as the pace is consistent the
refresh rate doesn’t need to be extremely high. 100 frames
per second (FPS) are past the limit of human perception.
Anything faster than that is lost on us entirely. Even 60 FPS,
a common option on televisions, it's nearly continuous to our
eyes. 30 FPS (updates every 33 ms) is closer to the classical
television frame rate. It looks smooth to our eye, but
somehow less lifelike than 60 FPS. It has a distinctive look
and feel. Cinematic frame rates of 24 FPS are even more
distinctive. Having grown up with the big screen as the
ultimate in movie presentation, I still harbor very positive
feelings about that 24 FPS aesthetic. In the absence of reason
to do otherwise, it’s the format I gravitate toward. High
frame rate movies of 48 FPS are also available in the theater,
but these feel off to me, even though they are closer to my
real world experience.

At 24 frames per second, our brains still stitch the frames
into smooth motion. If you know what you're looking for,
you can catch fleeting artifacts of individual frames, but it’s
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not immediately apparent. However once we get much
slower than that, it becomes possible to distinguish
individual frames. In situations where data size is
minimized, like security cam footage, frame rates in the
range of 10 FPS to 16 FPS are common. At these rates, it’s
still possible to see imagined motion, but it’s stuttered.
Anything 6 Hz or below gives a very strong impression of
successive still images. Still useful, but a different experience
than observing an object in motion.

We won't be doing anything here that is too complex or
computationally intensive, so we should be able to run the
frame rate as high as we’d like. By default, I'll set it at 24
frames per second, but I encourage you to play with it and
see what you prefer.

There are a couple of things that can block us as we try to
make our animation smoother. It can take a while to create
the next image. This step is called rendering, actually placing
all of the pixels where they need to be. When making
complex images like for a Pixar film, rendering a single
frame can take thousands of processor hours. Luckily we
will be keeping things simple, so that shouldn’t be a problem
for us.

The other step that can be time consuming is simulation.
This comes before a rendering. It’s the step where we figure
out, for instance, where all of the pieces of the robot arm
should be in space. We’ll dive into this in the next chapter, so
we won't have to worry about this for now. Instead of doing
any simulation in this chapter, we'll skip this step and tell the
animation exactly where every shape and line needs to be.



Making Animations with Matplotlib

It will make sense for us to use our pacemaker to track
missed frames. Too many missed frames will clue us in to
the fact that our simulation and rendering processes can’t
keep up with our frame refresh rate. Because this will be
running in a separate process from everything else it
shouldn’t munge things up, but it will be worth throwing a
warning to the developer that the frame rate is too high. If
this happens, the solution is either to speed things up by
streamlining the simulation and rendering computations, or
slow things down by decreasing the frame rate.

We are also going to take full advantage of interprocess
communication. Animation can be flaky. Anytime we are
interacting with physical hardware, even if it is a display, we
become subject to physical limitations. Often we'll have to
compete with other processes for the resources we need. If
another process from the operating system with higher
priority swaps in and blocks the display update, then our
animation will glitch. This is more likely to happen on some
systems than others, and it depends a lot on the specific
hardware you have and the specific combination of
programs you're running. But it’s safe to assume that it’s
going to happen now and again, so we want to make sure
that when it does it won’t break everything else we have
going on. Keeping the animation in a separate process is a
good way to do this.

In this configuration the simulation and rendering can each
be isolated in their own sandbox. If they hiccup, hang, or
even freeze, the worst that will happen is that the user will
have a bad experience. But it won’t prevent the rest of the
robot simulation or control code from running as it should.
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Matplotlib

In Chapter 3 we briefly introduced Numpy and Matplotlib
for working with data in Python. Now we are going to get
better acquainted with them.

Before Numpy and Matplotlib there was a program called
MATLAB (MATrix LABoratory) that specialized in scientific
computing. Specifically, it is very good at manipulating
arrays. The company that makes it is still around:
MathWorks just outside of Boston. MATLAB will always
have a special place in my heart. It was the first language
that I got comfortable enough with to make algorithmic
mischief. It got me through grad school and kicked me off as
a researcher. But when I started hacking around at home and
writing code that I wanted to share with the rest of the
world, the high price tag became a barrier. That’s when I
discovered Python, Numpy, and Matplotlib. They were
entirely free of charge, and as a bonus Matplotlib was
written to be very similar to MATLAB’s plotting routines. I
never looked back.

The mimicked MATLAB functionality in Matplotlib is just a
gateway drug. The bones of Matplotlib are a powerful and
low level drawing capability. You can literally manipulate
individual pixels if you are so inclined. This is what makes it
a good fit for our work in drawing and animating robots and
their environments. To unlock this power, we need to move
past the high level functions that draw lines and scatterplots
and delve into the inner workings. This means embracing
objects and object oriented programming.
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Object-Oriented Programming

If you're familiar with object-oriented programming you can
skip this part. If you're not, we'll cover just enough to meet
our needs. But know that it is a large topic the subject of
many volumes and much discussion.

To illustrate how Object Oriented Programming (OOP)
works and why it is useful, imagine we have a circle we'd
like to draw. There are a few things that we will need to
know about this circle like size, position, color. We can keep
track of all these in a collection of variables.

radius = 3

[l
Y

center_x_position

1
-

center_y_position
edge_linewidth = 2
edge_color = "darkblue"
face_color = "blue"

All of these things are necessary for fully specifying what to
draw and how to draw it. If we want to write code that
animates this circle, we can carry this collection of variables
around. Every time we need to find out something about the
circle, we can read these variables' values. Every time we
want to modify some aspect of the circle, we can change one
of their values.

This approach is fine. It's totally legal. But it's a little
awkward. All these variables are describing different
attributes of the same thing. But instead of keeping track of
that one big thing, we have to keep track of six little things.
If we pass the circle to a function, we have to pass six
arguments instead of one. It's unwieldy.



How to Train Your Robot

Now image if instead of 6 attributes, it was 60. What was
unwieldy becomes almost unmanageably complex. Now
imagine a dozen different circles instead of one. There
become so many variables to keep track of that the code
becomes unreadable and the probability of introducing a
bug approaches one.

To keep things cleaner, we can do some bundling. We can
create an object and gather the attributes into it. To kick this
off, we create a new object class, which we'll name Circle.

class Circle:

Now we have a Circle class, but it's still an empty shell. We
haven't defined anything about it. To fix that, we add an
initialization function. This function is special. It has to be
named __init__(). That's "init" with two underscores before
and after it. Surrounding a name with double underscores is
a convention Python uses to set aside particular names for its
own purposes. This double-underscore-init is one such
special name. If you call it "dunder init", you really sound

like you're in the know.

Dunder init is called every time we create an object of type
Circle, so it's a great place to set all the attributes we want to
keep track of.
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class Circle:
def __init__(self):
self.radius = 3

1
-

self.center_x_position
self.center_y_position = 1
self.edge_linewidth = 2
self.edge_color = "darkblue"
self.face_color = "blue"

In a confusing twist of syntax, __init__() takes a self
argument, which refers to the very object being created, the
new Circle object. Every attribute we want to assign to this
object, we declare with self.<variable_name>.

We can create and initialize an object of type Circle by calling
the class itself.

circle = Circle()

Calling Circle() automatically runs __init__() and assigns
the result to the new object variable, circle. Then we can
access its attributes with the circle.<attribute> syntax.

print(circle.center_x_position)
print(circle.edge_color)

1
darkblue
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And we can modify them the same way:.

print(circle.edge_linewidth)

circle.edge_linewidth = 1
print(circle.edge_linewidth)

Collecting and managing attributes are just two of the useful
things objects and classes do for us. They also let us define
functions that are specific to the type of object we’re working
with.

Imagine we wanted to implement a "go home" behavior for
our ball. Whatever its x- and y-position, it will take a small
step toward the (0, 0) home position, moving 10% of the way
toward it.

def go_home(circle):
circle.center_x_position .9 * circle.center_x_position
circle.center_y_position = .9 * circle.center_y_position

We could also write this exact thing more concisely.

def go_home(circle):
circle.center_x_position *= .9
circle.center_y_position *= .9

This is a short function, easy to understand and read. Now
consider the case of a more complicated function. Let’s say
that the size of the step that the circle takes toward the home
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position is determined by its radius and color in some
convoluted way.

def go_home(circle):
if circle.face_color == "darkblue":
rate = 1 / (1 + circle.radius ** 2)
else:
rate =1 / (1 + 2 * circle.radius)

circle.center_x_position *= rate
circle.center_y_position *= rate

It’s perfectly fine to represent this as a freestanding function,
but take a look at how closely it’s associated with the circle
object. It accepts one argument of type Circle, it accesses four
different attributes of that circle, and it modifies two of those
attributes. It is a method for doing something circle related
and doesn’t have much to do with the rest of the code. We
can reflect this close coupling by pulling this function into
the object itself. Just like we can bundle attributes, we can
also bundle functions that are specific to this type of object.

To do this in our code, we move the function inside the class
definition, and instead of an input argument circle, we
substitute self again.

def go_home(self):
if self.face_color == "darkblue":
rate = 1 / (1 + self.radius ** 2)
else:
rate =1 / (1 + 2 * self.radius)

self.center_x_position *= rate
self.center_y_position *= rate
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Just like the way classes manage attributes, gathering
object-specific functions into a class is a matter of
convenience. It doesn’t change what we can do or how well
it works, but it can be really helpful for keeping related code
together. Now, if I want to modify the go_home () behavior of
a circle, I don’t have to search through all of my code to find
where I implemented it. I know that it’s right there with my
class definition. If I want to work with circles, I just have to
find the Circle class code. I don’t have to also seek out all of

the functions I created for manipulating it.

By the way, if you want to be proper, there is particular
terminology to use when working with classes. It's not that
important, but it can be helpful to know.

Normally they're called But when they're part of a
class, they're called
variables attributes
functions methods

Object oriented programming isn’t the one right way to
write code, but it can be helpful in some situations. Whether
it makes sense to break your code up into classes depends on
practical considerations, like how complex it is and who will
be maintaining it. This decision can also be driven by the
aesthetic and philosophical preferences of the authors. There
are some beautiful ideas behind the object oriented
approach. Sometimes authors are so enamored by the ideas
behind it that they force their code into classes whether it
benefits from it or not. Depending on who you talk to, there
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can be strong feelings on all sides of this conversation. Just a
heads up.

Objects in OOP don’t have to be visible things. They can be
as abstract as we want. We could create an object that
represents a customer that contains attributes like their
contact information and methods for managing
communication and transactions with them. The pacemaker
we're using is based on the Pacemaker class (from
tyr.fyi/4files) we used in Chapter 3, which contains
attributes like clock_period and start_time as well as a
beat () method to help it keep time. We can even have an
object represent an entire robot, with attributes representing
each of its components that are themselves objects. (Spoiler:
This is exactly what we're going to do.)

For better or for worse, Matplotlib is heavily object oriented.
Everything important is an object. The Figure object is the
basis for everything. You can think of it as an art gallery
wall. It's a place where you place art, but you can't draw on
it directly. The Axes object is like a canvas. You can make it
any size you want and place it anywhere in the Figure. You
can even add several of them. Then, when you go to make
visual elements, these can take a few different forms, such as
a Line or a Patch, which are also objects. All of this means
that comfort with the concepts of classes, attributes, and
methods will serve you well.
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Having a ball

We now know just enough about OOP to dive into
Matplotlib. We begin by importing the pyplot package, and
by convention, abbreviating it as plt.

import matplotlib.pyplot as plt

Then we create a new figure. This returns an object of type
Figure.

fig = plt.figure()

We can pass the optional argument figsize to specify (in
inches) how large we expect the figure to be. (Yes, it is in
inches, not centimeters. I don't make the rules.) For a 4 inch
by 4 inch figure:

fig = plt.figure(figsize=(4, 4))

And we call the add_axes() method of the Figure class to
create a new set of axes.

ax = fig.add_axes((@, @, 1, 1))

The (0, 0, 1, 1) argument indicates that the axes should start
at the far bottom left of the figure window and extend the
full width and height. We are strong-arming our plot to fill
all the available visible space, the entire gallery wall. We're
turning the entire figure into a movie screen.
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Now for the critical bit.

lines = ax.plot(®, @, marker="o0", markersize=16)
ball = lines[©9]

The call to the plot() method of the axes draws a single
circular marker of size 16 at the x, y position of (0, 0). It
returns a list of all the lines that were drawn. In our case,
there is only one "line", and in fact just one point on that line,
so we pull off the first and only element off the list and call it
ball.

To round out the setup of the axes, these two lines of code
declare that the left edge of the figure corresponds to x =-1.1,
the right edge to x = 1.1, the bottom to y = -1.1 and the top to
y =11

ax.set_xlim(-1.1, 1.1)
ax.set_ylim(-1.1, 1.1)

The last two steps in setting up our animation are turning on
interactive mode with ion() and displaying the figure on the
desktop with show().

plt.ion()
plt.show()

This gets us our ball! We've drawn a ball! This is a major
milestone and we should all take a moment to revel in it.
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I'm happy for you! Also, don't take my ball.

Ballroom dance

So far we have done a bit of drawing, but no animation. Our
ball is just sitting there. To animate it we have three more
steps: calculate a new position for the ball, move it there, and
update the plot. Then we repeat that for as long as we want
the ball to stay in motion.

To generate a pattern of movement, we'll fall back to a
classic—sinusoidal oscillations with different frequencies in
the x- and y-directions, also called Lissajous curves.

for i in range(10000):
X = np.sin(i / 19)
y = np.sin(i / 9.01)

As the step counter, i, continues to grow, x and y wiggle
back and forth at different frequencies. This will give the ball
a wobble that starts as a diagonal line, fattens to a circle, then



Making Animations with Matplotlib

collapses back to a diagonal line leaning the opposite
directions, and repeats. You can play with the two constants
here, 10 and 9.01, and generate a whole family of behaviors.

The next step is to update the ball position. This is where we
get to take advantage of working with objects. Our ball has
some internal attributes that represent its x- and y-positions.
The code does some clever data handling things, so it won't
let us reach in and change the x and y data directly, but it
does provide a couple of methods that let us set their values,
set_xdata() and set_ydata(). This pattern of setting and
getting attribute data through methods is so common that
these special purpose methods have their own names: setters
and getters.

ball.set_xdata(x)
ball.set_ydata(y)

Updating the display takes some effort and time from the
processor, and it doesn't happen automatically every time
we make a change to our ball's position. We have to
specifically ask it to update the screen with the changes
we've made. This is also an opportune time to check in with
our pacemaker and keep our animation updates on the beat.

fig.canvas.flush_events()
pacemaker .beat()

And that's the whole enchilada. Now when we run this, we
see the gracefully swinging ball at tyr.fyi/4lissajous . It
contains all the basic ingredients of any animation we'll ever
make: the implementation of the draw-move-update-repeat
loop. Here's the full code for the ball moving in Lissajous
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curves. Now that we've worked through it, it should feel
more familiar.

import numpy as np
import matplotlib.pyplot as plt
from pacemaker import Pacemaker

pacemaker = Pacemaker(24)

fig = plt.figure(figsize=(4, 4))

ax = fig.add_axes((@, 0, 1, 1))

lines = ax.plot(@, @, marker="o0", markersize=16)
ball = lines[9]

ax.set_xlim(-1.1, 1.1)

ax.set_ylim(-1.1, 1.1)

plt.ion()

plt.show()

for i in range(160000):
X = np.sin(i / 10)
y = np.sin(i / 9.01)
ball.set_xdata(x)
ball.set_ydata(y)
fig.canvas.flush_events()

pacemaker .beat()

lissajous_ball.py

A Note for Notebook users

There is one change you'll need to make to get this to run in
a Python notebook. At the very beginning make sure to
include this magic.

%matplotlib notebook

Keep this trick in mind for all the animation scripts from
here on out.
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Juggling

Now that we can make one ball flit around the screen, let's
try the same trick with several of them at once. It's a
straightforward repetition of what we've already done.
Instead of creating just one ball, we copy, paste, and tweak
that line to create four of them.

ball = ax.plot(®, @, marker="0", markersize=16)[0]

shadow_1 = ax.plot(@, @, marker="o", markersize=16)[0]
shadow_2 = ax.plot(@, @, marker="o0", markersize=16)[0]
shadow_3 = ax.plot(@, @, marker="o0", markersize=16)[0]

And instead of moving one ball, we can move all four of
them at once. Here we make the adjustment of staggering
the balls a bit, so that each of the shadows is trailing the
main ball by a few steps.

ball.set_xdata(np.sin(i / 16))
ball.set_ydata(np.sin(i / 14))

shadow_1.set_xdata(np.sin((i - 1) / 16))
shadow_1.set_ydata(np.sin((i - 1) / 14))

shadow_2.set_xdata(np.sin((i - 3) / 16))
shadow_2.set_ydata(np.sin((i - 3) / 14))

shadow_3.set_xdata(np.sin((i - 6) / 16))
shadow_3.set_ydata(np.sin((i - 6) / 14))

We can create as many objects as we like and move them
however we want! It's an exciting time.
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Color coordination

If you run the code like this, you'll notice that each ball is a
different color. We haven't told Matplotlib what color to
make each ball, so it has fallen back to its default palette. If
we'd like to exert some control over the colors, we certainly
have that option. We can use the named keyword color and
pass a value for it to plot().

ball = ax.plot(
0, 0,
color="darkblue",
marker="0",
markersize=16,

)Le]

There are a few different ways we can tell Matplotlib what
color to use. The most intuitive of these is to call out a color
by name. Not every color name you can think of is
supported, but a surprising number of them are. For instance
in the blue family there are slateblue, darkblue, lightblue,
midnightblue, cornflowerblue, and a bunch of others.

If you are so inclined, you can also use a tuple of three
values between 0 and 255. These get interpreted as red,
green, and blue values in the RGB color space. For example,
(0,0, 0) is black, (255, 255, 255) is white, and (255, 0, 0) is as
red as red can get.

An alternative way to specify a color by RGB values is to use
its hex code. In hexadecimal, 255 is ff, so white is (ff, ff, ff) in
hex RGB space. This gets further shortened to look like
#ftfttf. This is a concise way to express any color we will ever
want to render. The website hexcolorcodes.org has a fun
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interface that you can use to experiment with and learn the
relationship between a hex code and the color it generates.

For a deeper dive into all of your Matplotlib color options,
you can go to tyr.fyi/4color and for a yet deeper dive into
how colors are represented with RGB values, check out
tyr.fyi/4numbers.

I have mixed feelings about the use of color in animations.
On the one hand, I am a bit red-green color blind, so there
are differences between blues and purples and greens and
browns that I don't pick up on. There are several varieties of
color blindness, so any color display will be understood
differently by different viewers. The pragmatic part of me
thinks it might just be easier to do everything in grayscale.

However, there is no denying that color is an effective way
to get viewers to feel something. Just like changing the
background music in a movie scene gives it an entirely
different feel, changing the color palette in an animation
gives it a wholly different vibe. Color combinations are a
powerful way to tap into feelings and associations that the
viewer isn’t even aware of.

Because I'm a little bit color challenged, I like to go online
and look at color palettes that designers have shared. There
are a million of them. If you search "color palette” and add a
few descriptive words like "outer space"” or "cozy fireplace",
you'll get a lot of options. I don’t always know what I'm
looking for before I find it, but often when I stumble across
the right combination of colors it makes me feel a certain
way, and I know that’s the color combination I want to use
for the project I'm working on. They’re usually accompanied
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by their hex color codes, which I copy into my Python script,
and I try to include the link back to the original source.

For our ball with its shadows, we'll stick with variations on
the theme of blue. Each trailing ball will be a little lighter
shade to give us a sense that time has passed and the
impression of the ball has faded: #4682b4, #a7c4dd, #d3e2ee,
#e910f6. You're not expected to have a mental picture of the
color just by looking at these, but notice how the number
pairs get higher as we go. They are getting lighter,
approaching white, #{fffff. Also notice how the first two
digits, the red channel, are always the lowest of the three and
the last two digits, the blue channel, are always the highest.
It's not a pure blue, but it's more blue than anything else.
Here's what the four circle callouts look like now.

ball = ax.plot(

0, 0,
color="#4682b4",
marker="o0",

markersize=24)[0]
shadow_1 = ax.plot(

e, o,
color="#a7c4dd",
marker="o0",

markersize=24)[0]
shadow_2 = ax.plot(

0, 0,
color="#d3e2ee",
marker="0",

markersize=24)[0]
shadow_3 = ax.plot(

0, 0,
color="#e9f0f6",
marker="0",

markersize=24)[0]
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Stacking order

If we're not careful, Matplotlib will draw the shadows on top
of the original ball rather than underneath it. We want to
make sure that the youngest shadows are on top of the older
ones, and that the ball itself is on top of everything else.
There are two ways to do this. One is by re-ordering our
lines of code, so that Matplotlib's default handling happens
to get them in the right order. This is fiddley and
error-prone, and can spike your stress levels. Instead, we are
going to tell Matplotlib exactly what order to stack these in.

The named argument zorder gives explicit instructions as to
what falls on top of what. It works like a z-coordinate, a
position out of the page. Whatever has the highest z-order
will be on top, the lowest z-order will be on the bottom. It
can be any number you like. In our case, we just have to
make sure that the ball has the highest z-order, and that each
progressively older shadow has a lower z-order than the one
before.
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Here’s what the final code looks like for specifying the ball,
its shadows, their colors, and their order.

ball = ax.plot(

0, 0,
color="#4682b4",
marker="o0",

markersize=24,
zorder=3)[0]
shadow_1 = ax.plot(

0, 0,
color="#a7c4dd",
marker="o0",

markersize=24,
zorder=2)[0]
shadow_2 = ax.plot(

0, 0,
color="#d3e2ee",
marker="0",

markersize=24,
zorder=1)[0]
shadow_3 = ax.plot(

0, 0,
color="#e9fof6",
marker="o0",

markersize=24,
zorder=0)[0]

Now that we’ve flexed our muscles and told Matplotlib
exactly what we want, our code has gotten a little bit longer.
This is an ongoing trade-off in Matplotlib. It offers complete
control, and the price we pay is more lines of code. It's a
reasonable trade-off in my opinion. But it means that we
may need to employ some strategies to manage longer
visualization code.
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The first line of defense is breaking the code up into
functions. Our code does a couple of important things here.
There’s one chunk where we create the ball and all of its
shadows. There is another chunk where we update the
position of the ball and each of its shadows. Then there is the
overarching code that initializes the figure and iterates
through the frames. These three chunks are a reasonable way
to split up the code. We can break the code out into three
functions, create_circles(), move_circles(), and main(). If
we look ahead a little bit, this structure has the advantage
that it will let us swap out new code for the
create_circles() and move_circles() portions without
having to change the overall structure. We’ve taken a step
toward making our code modular. Pieces of it are reusable
for future projects.

When it comes to breaking code up into functions, there are
a lot of different preferences and philosophies. As with
everything, there is no one right answer. The winning
solution is whatever works best for who's going to be
writing, reading, and maintaining the code. If that’s just
going to be you, then your opinion is the only one that
matters.

I tried to write my code for the future version of me that will
have forgotten everything I did and why I did it. For future
me, an ideal Python file is readable start-to-finish. It begins
with the highest level function, the one that executes the
main purpose of the code. In our case that is main().

Then, as I'm reading through main(), I come across functions
that aren't yet defined, like create_circles() and
make_circles(). The names of these functions give me a
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rough sense of what they do, and, as I read further down
through the code, I can fill in the remaining gaps in my
knowledge by reading the functions themselves. More
complex code may have several levels of functions calling
other functions. If I'm really on my game, each function will
take up no more than one screen on my computer, allowing
me to read it as a single page. That lets me read only as
deeply as I want and then skim over the lower level details
after that.

The one thing I have to remember to make this game work is
to call the main() function at the very end of the script so
that it will run when I call the script.
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With all of this in place, here’s what our finished animation
code looks like.

import numpy as np
import matplotlib.pyplot as plt
from pacemaker import Pacemaker

def main():
pacemaker = Pacemaker(24)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_axes((@e, 0, 1, 1))
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
circles = draw_circles(ax)
plt.ion()
plt.show()

for i in range(1000):
move_circles(circles, i)
fig.canvas.flush_events()
pacemaker .beat()

def draw_circles(ax):
ball = ax.plot(

0,

e,
color="#4682b4",
marker="0",

markersize=24,

zorder=3,

ylel]

shadow_1 = ax.plot(
9,
e,
color="#a7c4dd",
marker="0",

markersize=24,
zorder=2,

)[e]



How to Train Your Robot

shadow_2 = ax.plot(
0,
e,
color="#d3e2ee",
marker="0",

markersize=24,

zorder=1,

yl[el]

shadow_3 = ax.plot(
0,
e,
color="#e9fof6",
marker="0",

markersize=24,
zorder=0,

)[e]

return (ball, shadow_1, shadow_2, shadow_3)

def move_circles(circles, i):

(ball, shadow_1, shadow_2, shadow_3) =

ball.set_xdata(np.sin(i / 16))
ball.set_ydata(np.sin(i / 14))

shadow_1.set_xdata(np.sin((i
shadow_1.set_ydata(np.sin((1i

shadow_2.set_xdata(np.sin((i
shadow_2.set_ydata(np.sin((i

shadow_3.set_xdata(np.sin((1i
shadow_3.set_ydata(np.sin((1i

main()

/ 16))
/ 14))

/ 16))
/ 14))

/ 16))
/ 14))

circles

shadowed_circle.py
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Just a reminder, you can find this and all of the other scripts
from this chapter at tyr.fyi/4files. If you would like to copy
and paste from the GitHub repository, or fork it and do
something fancier, please help yourself.

Watch the show at tyr.fyi/4shadows.

When we run this, we see a graceful blue ball, swaying
back-and-forth across the screen trailed by three shadows,
each lighter than the last. Thanks to our careful color
selection, they are nicely coordinated. Thanks to our careful
ordering, each shadow falls under the one that came before.
These finishing touches give it a clean look and are well
worth the extra trouble.

Once you have the code running, play with it. Change the
size of the balls, play with the position update to make the
movement faster or slower, make wider or sharper wiggles.
Change the colors. Add some more shadows. Make a second
ball that moves in a different pattern. Tweaking things and
see what happens is an excellent way to learn about what'’s
going on


http://tyr.fyi/4files
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Patches

Circles are great, but it’s very likely that we will eventually
want to draw something else. There are some shortcuts for
jumping to triangles, rectangles, and stars, but we’re going to
skip right to the power solution: patches. A patch is an
arbitrary polygon. It’s a connect-the-dots outline of a shape.
It can have as many points in its outline as we want. When it
comes to drawing shapes, patches are the Key To The City.

To define our patch, we have to create a path. This is a
sequence of dots that gets connected to draw the shape. A
path to draw a triangle would look like this.

Each row represents one point, its x-value and its y-value.
After they are all stacked together, the path is an array with
two columns. To turn this into a patch on the drawing, we
have to invoke Matplotlib patch object, and use the path to
initialize it.
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import matplotlib.patches as patches
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.gca()
path = [

, .31,

, 91,

[.
[.
[.8, .4],

oo N =

]
ax.add_patch(patches.Polygon(path))

fig.savefig("patch.png")
triangle_patch.py

Then we can have it show up in our plot with each vertex
being at the specified path coordinate.

1.0

0.8 4

0.6

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

We can have as many points as we want in our path. Going
from the shape in your imagination to a numerical path can
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be a bumpy road. There are several ways to go about it, but
none of them are painless. Here’s a method I regularly use
for slightly more complex shapes.

1. Start by hand sketching a shape in Google Slides or a
similar app. Here I also included the center point that
I want to use as the (0, 0) position in my drawing's
coordinate system.
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2. Make sure there is a ruler of some sort visible and
project each vertex back to its horizontal and vertical
positions.

/

\
3. Find the x- and y-coordinates of each vertex in the
shape.

(4.94, 1.21)

(4.25, 2.55) (5.55, 2.45)

(4.94, 2.92)

X

(5.13, 3.25)

(5.92, 4.21)

(3.86, 4.51)
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4. Pick any vertex and go around the shape in order.
Type each (x, y) pair into an array.

uncentered_path = np.array([

[4.94, 1.21],
[5.55, 2.45],
[5.92, 4.21],
[5.13, 3.25],
[3.86, 4.51],
[4.25, 2.55]

D

Subtract the x and y values of the center point from every
other point in the path to center it over (0, 0).

center = np.array([4.94, 2.92])
path = uncentered_path - center

Flip the y-axis to account for the fact that the positive
y-direction is down for our ruler.

path[:, 1] = -1 * path[:, 1]

There are also some keywords we can use to customize the
face color and the color and thickness of the outline.

ax.add_patch(patches.Polygon(
path,
facecolor="none",
edgecolor="black",
linewidth=2))

Et voila! Our hand sketch is now immortalized in Python
code.
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Translation

The five-dollar word for moving something around on the
page is translation. It very specifically means moving a thing
without spinning it or bending it or changing it in any other
way. When we were working with a ball, whose position
was defined by a single point at its center, translation was
trivial. We just moved the center to a new location and the
rest of the ball followed. Now that we are working with
patches we have to be more thoughtful. The patch we just
created is defined by a path with six points, each with their
own coordinates. Moving it around on the page just became
a bit trickier.

When moving a thing, the first step is to figure out how far
we want it to go. If we're looking at changing the x-position
of a thing, then this change will be Ax. If we know where a
thing is, X .., and where we want it to end up, x4, then

Ax = Xend — Xstart

Armed with the change we want to see in the world, the next
step is to apply it to each point in the path, one at a time.

Xiend = Xistart + Ax
for all i in the path.
Translation in the y-direction works exactly the same way.

Yiend = Yistart T+ Ay

If we want to get a little fancier, we can write this out as a set
of matrix operations.
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[ xi,end l _ lxl ,start l [ ]
Yiend Yi,start
It means exactly the same thing, it’s just a way to combine

the two equations into one. For now it’s decorative, but later
in the chapter it will prove useful.

Matrix notation is also useful because it mimics the Python
code. Numpy’s foundational data structure, the array;, is a
matrix as far as we are concerned. The implementation of

translation looks similar to the matrix equation.

dx = 2

dy = -1

translation = np.array([[dx, dy]])
translated_path = path + translation

Even though we are adding the same dx and dy to every
point in our six-point path, we only have to create one (dx,
dy) pair. When we go to add our path array with six rows
and two columns to our translation array with one row and
two columns, Numpy automatically infers that we meant to
have six copies of that row, adding the same dx and dy to
each x and y in the path.
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When we tell Numpy
X, v,
X ‘l}’z
x 3 yﬂ + A
X
X ‘l}’_;
x v
s Ys
it knows we really mean
X, v, Ax
X, v, Ax
X, v, + Ax
X, v, Ax
x, v, Ax
x, LA Ax

Ay

Ay
Ay
Ay
Ay
Ay

Ay

This assumption is called broadcasting and saves us a lot of

tedious replication. It is one of the many useful things
Numpy does for us. When we work with arrays of different

shapes, it makes a lot of labor-saving assumptions about

what we intended.

A terminology note: matrix is the official mathematical term

and array is the official computational term. Pedants from
both camps will tell you they are different things. And

they're right. But we're going to gloss over all that and use

the terms interchangeably because their differences don't

matter to us right now.
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Scaling

Now that we're working with patches, we have a lot more
freedom of expression. Not only can we move them around,
but we can also make them bigger and smaller.

Getting started is straightforward enough. If we want to
double the size of a patch, we can multiply every x and
every y by two. This will make it twice as wide and twice as
high. If we want the final height and width to be 1/10 of the
original, we multiply everything by .1. It's no coincidence
that the word scaling is often used as a synonym for
multiplication.

The difficulty comes when the object we are scaling is not
situated at (0, 0). If it’s centered at (1, 1) for instance, then
after multiplying all of the x's and y's by two, the new patch
would be centered at (2, 2). Multiplication not only causes
the patch to grow or shrink, but also causes it to get further
away from or closer to the origin.

The solution to this is to
1) first move the object to the origin,
2) then scale it,
3) then move it back to where it started.

Luckily, moving things around is a problem we just finished
solving with translation. The only question that remains is
where exactly the origin should be. This is the point on the
object that will stay put no matter how we blow it up or
shrink it, how we zoom in or out. This is the object's anchor.
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Anchors aweigh

The anchor can be any point we choose. In a lot of cases, it
makes sense to put it in the middle of the object. This can be
the average of all the path points' x-positions and
y-positions. It can also be the geometric centroid of the patch
or just a hand-picked spot that sits visually near the center.
With a target near the center, the middle of the object will
appear to stay put no matter how we scale it.

Intuitively, the middle of an object is what we think of as its
location. It’s the thing we don’t want to change even as it
changes sizes. But sometimes that’s not the case. Consider a
mouse pointer in the shape of an arrow. In this case, if we
change the size of the arrow, it is the point of it that we want
to make sure stays in one spot. The tip of the arrow is the
intuitive anchor. This also goes for pins on a map. It’s not the
center of the tag we care about so much as the very point
that is identifying a location.

When trying to determine the anchor
of an object just ask yourself,
"What part of it would I use to boop an Ewok?"
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In the maps of ride scheduling apps, for instance, cars are
represented with anchors at the dead center, right on top of
the travel mug full of iced coffee.

No matter how you zoom in or out, the center of the car
represents its estimated position. As a result, when you're
zoomed out far enough, it looks like a car stopped at a
stoplight is straddling the entire intersection. Free consulting
advice to ride sharing apps: A better anchor might be the
front of the car.

If this poor driver were actually sitting
in the middle of the Eastbound lane
of Boston's Commonwealth Avenue,

they would be having a very bad day.

In the case of text, there is a baseline that we want to stay
fixed, no matter how each character is scaled. It will fall at
the bottom of most lower case letters, but for those with tails,
like p and q, the baseline falls closer to the midpoint of the
character. For these, it’s important that the anchor not be set
at the bottom of the character, but rather at the baseline. That
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will help the rounded bottoms of the p and q to stay in line
with the rest of the text, even when they are rendered in a

much larger font, as p and q

An anchor doesn’t even have to fall within an object. For an
annotation box, for instance, we may want to make sure that
it always stays just to the right of the thing it’s annotating.
Whether we make it larger or smaller, we want to maintain a
small offset from the object it’s referencing. In this case, the
anchor would fall outside the box entirely.

The circled X below
and to the left

is the anchor for this
annotation box.

The circled X below
and to the left
is the anchor for this
annotation box.

The anchor falls below and to the left of the annotation box.

Another common case is where we have a collection of
patches that need to maintain a fixed relationship with each
other, for instance, the eyes, nose, and mouth in a drawing of
a face. As we scale the features up and down, we want to
make sure that they maintain the same relationship so that
the whole face looks like a larger or smaller version of itself,
rather than looking like eyes are growing and shrinking in
an otherwise unchanging face. The solution to this is to give
every patch in the group the same anchor point, perhaps the
bottom of the nose. Even though this anchor falls well
outside both of the eyes, having them share an anchor means
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that, if the eyes double in size, the space between them will
double as well. All the relationships will be maintained.
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Original face with Face scaled by 2x. Face scaled by 2x.
four features. Each feature All features
anchored at its anchored at a
center. common point.

All this is to say that every object needs to have an anchor,
and the location of that anchor will depend entirely on what
the object is, and how it’s meant to be interpreted by the
viewer.

Now that we have an anchor point, one advantage it gives is
allowing us to describe the position of a complex object with
a single (x, y) pair. All we really need to know is where the
anchor is. We can figure out where every other vertex is after
that if we need to.

For scaling, the anchor tells us exactly what part of our patch
needs to be at (0, 0) before we do any multiplication. Our
scaling operation breaks down to three steps:

1) translate the anchor point to (0, 0)

2) scale every point in the path

3) translate the anchor point back to where it was.
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In matrix notation it looks like this. If the original anchor
point is (X,nchors Yanchor) and the scaling factor is a, then

Xscaled X — Xanchor
Yscaled Y — Yanchor

In code it looks similar, although it ends up being more

Xanchor ]

Yanchor

convenient to represent each (x, y) asa 1 x2 (1 row and 2
column) matrix, rather than a 2 x 1 (2 row and 1 column)
matrix as we did above. It might seem like a small difference,
but small differences have brought down many mighty
programs. The 1 x 2 anchor array broadcasts naturally with
our 6 x 2 path array.

anchor = np.array([[x_anchor, y_anchor]])
scale = 3
scaled_path = (path - anchor) * scale + anchor

With this new trick up our sleeve, we can scale an object
however we want in an animation. Let's say we want to take
our original arrowhead object and make it beat like a heart.

First, we would need to define how the scale will change
over time. To get a thythmic motion, we can combine a
couple of sine waves whose frequencies are small multiples
of each other. The "angle" that we feed the sine functions is
time. For this we'll use a multiple of the frame counter, i.

theta i/ 7
scale = 3 + 0.6 * (
np.sin(theta) + 0.4 * np.sin(3 * theta))
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Having a scale that is a sinusoidal function of theta means
that every time theta passes 2 X 7, about 6.3, the cyclical
pattern will complete and start over. (Keep in mind that
Numpy does all of its trigonometry in radians, so a complete
cycle is 27 radians, rather than 360 degrees.) Because we are
using i/7 as theta, a complete cycle will take about 44
frames. And because we are animating this at 24 frames per
second, a complete cycle will take a little over 1.8 seconds,
about 33 beats per minute. This arrowhead is extremely chill.

Now that the heartbeat-like scale has been crafted, we can
perform the scaling transformation.

scaled_path = (path - anchor) * scale + anchor

Here we can make a simplification. We intentionally defined
our path so that the anchor was at (0, 0). That lets us perform
the scaling more concisely.

scaled_path = path * scale

And finally, we update the patch object to complete the job.

patch.set_xy(scaled_path)

Here are all the snippets above, condensed into a single
function as it appears in the animation code. I haven't
bothered to repeat the rest of the code here, since it is quite
similar to the code we've already walked through.


https://www.codecogs.com/eqnedit.php?latex=2%20%5Ctimes%20%5Cpi#0
https://www.codecogs.com/eqnedit.php?latex=2%5Cpi#0
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def pulse_patch(patch, path, i):
theta =1/ 7
scale = 3 + 0.6 * (
np.sin(theta)
+ 0.4 * np.sin(3 * theta))
patch.set_xy(path * scale)

patch_scaling.py at tyr.fyi/4files

AAAA

The arrowhead gets bigger and smaller. You get the idea. Check out the

video at tyr.fyi/4pulsing. Trust me, it's way better than this picture.

Notice how the center of the object stays put. Every point in
the path is moving in a different direction, but the overall
effect is that the object is motionless, growing and shrinking
to the beat. Cool, right?

Rotation

The third of our three musketeers of 2-D transformations is
rotation—getting a thing to twist and spin. We get to reuse the
notion of an anchor here. This is the point that stays put as
we spin the object. As with scaling, every point in the path
will move in a somewhat different way. It will all depend on
where it sits relative to the anchor.


http://tyr.fyi/4files
http://tyr.fyi/4pulsing
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Rotation is particularly fun, because the math starts to look
impressive. It has both trigonometry and matrix
multiplication. On first exposure it can all seem pretty
intimidating, but don’t let that scare you off. We'll take it one
step at a time.

We can build a gut feel for how rotation works by starting
with some well chosen examples. Consider a point sitting on
the x-axis at (1, 0). If we want to rotate it by some angle, say
30° (or m/6 radians) about the origin, it would move to a
new position. The new x would be cos(r/6) or V3. The new
y would be sin(r/6) or %.

A
1+ x_=cos(m/6) =V3
y  =sin(n/6) =%
]/2 -1
x,=1
Y,=0
/6
- : >
V3 1
\J

We can generalize that out to any angle of rotation, 6, and
say that the new x will be the cosine of 8, and the new y will
be the sine of 6. This works for any angle, positive, negative,
greater than 360° (2w rad), it doesn’t matter.


https://www.codecogs.com/eqnedit.php?latex=%5Csqrt%7B3%7D#0
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If our point on the x-axis is at some other location, x,, we can
extend our initial result by multiplying everything by x,.

Xnew = Xg c0s(8)
Ynew = Xo sin(0)
We can do a similar exercise for a point that sits on the

y-axis. A point at (0, 1), rotated by 6 will end up with x,,, as
the negative sine of 4, and the new y,.,, as the cosine of 6.

A
xO =
Yo~ - 1
x_=-sin(6)
y_ = cos(6) 1
0
- i i >
1
\J

And for a point at (0, y,) this extends to

Xnew = —)0 Sil’l(@)
Ynew = Y0 COS(H)

Because of the fabulous properties of math, the fact that our
x- and y-axes are orthogonal (rotated 90° from each other)
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means that we can just squash these two results together to
figure out what would happen if we started with a point at
(%o, Yo) and rotated it by 6.

Xpew = Xo c0s(8) — yo sin(6)
Ynew = Xo sIn(0) + yo cos(0)

Using matrix notation, we can rewrite this as

[xnew ] _ [Xo cos() — Sin(g)
B Xosin(8) +  yp cos(6)

ynew

which is the same thing, but in matrices.

The matrix on the right hand of the equals sign has some
nice structure to it. We can actually break it apart and
express it as the matrix product of two separate matrices.

[x,,,ew ] B [COS(B) - sin(G)] [xo ]

Ynew 811’1(9) COS(Q) Yo

If you've never seen it before, matrix multiplication is a
choreographed sequence of multiplications and additions.
No individual piece of it is very fancy, but the end result can
look quite fancy indeed. If you'd like to take 15 minutes to

get a peek at the inner workings, please take a look at
tyr.fyi/4matmul.

You may be wondering why we're going out of our way to
get mathy here. Matrix multiplications are a convenient way
to represent transformations of many sorts. They come up
again and again in robotics, signal processing, and machine
learning. In the world of math, they go by the terrifying
name of linear algebra. But when you get up close, all those


http://tyr.fyi/4matmul
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snarling teeth turn into a giant cuddly bear. They’re just a
bunch of multiplications and additions.

When we sit down to write this in Python, it ends up making
things easier if we swap our rows for our columns, and vice
versa. This swap is called transposition, and it comes up a
lot in linear algebra. The only catch is that when we take the
transpose of a matrix multiplication, we have to change
around the order of the matrices. After taking the transpose
of both sides of our rotation transformation, it gets a bit
rearranged.

cos(@)  sin(@) ]

[xnew Ynew ] = [XO Yo ] [ —sin(f) cos()

Thanks to the cleverness of matrix multiplications we can
use this form to rotate a whole collection of points at once.

[ X0 new YO new ] [ X0 Yo ]
X1new Y1 new X1 N
X2new Y2new | _ | X2 )2 [ COS(Q) Sln(a) :|
X3new Y3 new X3 )3 —sin(@) cos(d)
Xdnew Y4 new X4 Y4

L X5new Y5 new | [ X5 Y5 ]
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This will come in handy as we are working with our path, a
2-column matrix with one row for each point. In Python the
rotation transformation matrix is easily recognizable.

rotation = np.array([
[np.cos(angle), np.sin(angle)],
[-np.sin(angle), np.cos(angle)],

D

To do the matrix multiplication, we can take advantage of
the @ operator, which Numpy has hijacked and uses for this
purpose.

rotated_path = path @ rotation

If you prefer a function, you can use matmul() and get the

exact same result.

rotated_path = np.matmul(path, rotation)

In either case the most important thing to remember is that
order of the arrays matters. A@B and B@A are different things.

Now that we have a rotation worked out, there’s nothing
that prevents us from doing several transformations on the
same shape. We can stack them, doing one after the other
until we get the effect we want.
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This example shows our arrowhead shape performing both a
rhythmic rocking, a rotation, and bobbing up and down, a
translation.

This arrowhead swings back and forth
while bouncing up and down.
Check out the video at tyr.fyi/4rocking.

In code, we do the same thing we would do for a rotation
and a translation in isolation, but we do them one after the
other. The fact that we use the anchor point as a reference
and track it as it undergoes various transformations buys us
this flexibility.


http://tyr.fyi/4rocking
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Here's the whole sequence. It's a lot. We'll break it down.

def step_animation(patch, path, i):
anchor = np.array([[8, 1]])
anchored_path = path - anchor

scale = 2.5
scaled_path = anchored_path * scale

theta = i / 10
angle = 0.5 * np.sin(theta)
rotation = np.array([
[np.cos(angle), np.sin(angle)],
[-np.sin(angle), np.cos(angle)],
D
rotated_path = scaled_path @ rotation

x_translation = ©
y_translation = 20 * (1 - np.cos(angle))
translation = np.array([[

x_translation, y_translation]])
translated_path = rotated_path + translation

transformed_path = translated_path + anchor

patch.set_xy(transformed_path)

step_animation() from patch_rotation.py at tyr.fyi/4files

Step 1. Choose the point (0, 1) as the anchor, and move the
path so that the anchor sits at (0, 0) .

anchor = np.array([[0, 1]])
anchored_path = path - anchor

Step 2. Scale the path up by a factor of 2.5.

scale = 2.5
scaled_path = anchored_path * scale


http://tyr.fyi/4files
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Step 3. Rotate the arrowhead in a back and forth rocking
manner. Use an intermediate variable theta to track progress
through each rocking cycle. Every time theta reaches a
multiple of 27 the cycle will start over. The variable angle is
the actual pendulum angle, measured as a deviation from
the original position.

theta =i / 10
angle = 0.5 * np.sin(theta)
rotation = np.array([
[np.cos(angle), np.sin(angle)],
[-np.sin(angle), np.cos(angle)],
1)
rotated_path = scaled_path @ rotation

Step 4. Re-use the variable angle here to get a cyclical
up-and-down translation that is in sync with the rotation.

x_translation = ©
y_translation = 20 * (1 - np.cos(angle))
translation = np.array([[

x_translation, y_translation]])
translated_path = rotated_path + translation

Step 5. Undo Step 1 to restore the original position.
transformed_path = translated_path + anchor

And that's the whole sequence of operations for doing a
combined scaling, rotation, and translation.


https://www.codecogs.com/eqnedit.php?latex=2%20%5Cpi#0
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This is an important milestone! While there are technically
other transformations we could do to a 2-D object, these are
all of the ones that preserve its shape. In math terminology,
they are similarity-preserving, which means that the angle at
each vertex remains unchanged. It is a fantastic starter kit for
programmatic animation.

That was a lot. I need a nap.
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Point-to-point movement

The next item of business is to consider how to move
something around. In the examples so far we have modified
scale, angle, and position as sinusoidal oscillations. This is
useful, but not complete. We are also going to want to move
a thing from one point to another and have it stay there, at
least until we tell it to move again.

Let’s put our arrowhead in space and call it a ship. Our goal
is to get this ship to fly a triangular path. It has three points
in space that it needs to hit. This translates to six poses,
because each time it reaches a point, the ship needs to then
rotate in place so that it can fly in the direction of its next
point.

To put some concrete numbers to this, let’s say the three
points are (3, 4), (5, -7), and (-5, 0). The heading that the ship
needs to take to get from one point to the next, measured as
rotations from the original orientation in which we drew the
arrowhead, are approximately 1.7x, 1.05%, and .3n radians.

(We are going to be sticking with radians instead of degrees.
They are what Numpy uses, and it will save us from having
to do a lot of back and forth conversions. If you are still
building an intuition for radians a good starting point is
remembering © = 180°. Everything else falls out from that:
n/2=90° n/4 =45° n/6 = 30° 2n = 360°.)

We also need to specify how much time we want the ship to
take getting from one pose to the next. The most natural unit
of time in animation is number of frames. Because we're
working at 24 frames per second, transition times in the
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range of 15 - 35 frames will give us movement that is slow
enough to watch but fast enough to be interesting.

Here is our full set of pose points.

point coordinates heading (rad) | frames to get here

A (-5,0) 1.7n 1

B (3 4) 1.7n 30
B (3 4) 1.05% 18
C 5, -7) 1.05m 29
C 5,-7) 3n 17
A (-5,0) 3n 33
A (-5,0) -3n 19

This will play on repeat. Note how the final angle is different
from the initial angle by 2. This is to "uncoil" the angle as
the ship goes around in a circle. This full-spin as we jump
from the last row back up to the first happens in a single
frame and so it leaves no visual evidence.

The notion that there are a few important poses that need to
be smoothly connected is a useful concept. The details about
what objects do in between those poses can really affect the
feel of the animation. In artistic animation these important
poses are called keyframes, and the smooth movement
between them is called easing. Subtle differences in easing
functions can give animations a distinctly different feel.

Given two points and a set amount of time to move an object
from one to the other, a reasonable starting point is a
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constant velocity trajectory along a straight line path
between them. To traverse a path between A and B in 37
frames, we might draw a line between them and chop it up
into 37 equal steps. Then we can advance the object one step
per frame.

Moving between pose (x_1i, y_i, theta_i) and (x_j, y_j,
theta_j) in n_frames is three lines of code in Numpy.

XS np.linspace(x_i, x_j, n_frames)
ys = np.linspace(y_i, y_j, n_frames)
thetas = np.linspace(theta_i, theta_j, n_frames)

This approach dedicates one frame to the starting point and
one frame to the end point.

For our spaceship we can see what this looks like for each
leg of the triangle. We can also use a constant rotational
velocity to pivot between legs.

See the video at tyr.fyi/4constant.
The full code is in spaceship_triangle.py at tyr.fyi/4files.


http://tyr.fyi/4constant
http://tyr.fyi/4files
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The resulting motion certainly does the job of getting the
spaceship where it needs to go, but the sudden starts and
stops coupled with the artificially constant movement
between them leaves the animation looking clunky and
cheap.

It’s also weird to our eyes because it violates the laws of
physics. Anything with mass, such as a spaceship, can’t go
from a dead stop to a steady speed in an instant. It would
require infinite force and infinite energy. Our eyes aren’t
used to seeing that in the world, so our brains interpret this
as a very fake spaceship.

We can do one step better by imagining how the spaceship
would move if it had mass. We will cover this in a lot more
detail in the next chapter on simulation, but for now it’s
enough to claim that if we were to push on our spaceship
with a constant thrust, it would exhibit a constant
acceleration, a smoothly ramping velocity. To move from
point A and come to a stop at point B, we need a triangular
velocity profile. A smoothly ramping to a peak at the
midpoint, then smoothly ramping back down, will do the
job. It will show constant acceleration for the first half of the
journey, then constant acceleration of equal magnitude in the
opposite direction for the second half of the journey. This is
actually not too far off from how an actual spaceship would
go about making this trip.



Making Animations with Matplotlib

It's worth a walk through it because we’ll use a similar
process in the future. To move between (x_i, y_i, theta_i)
and (x_j, y_j, theta_j) in dt frames, first calculate how much
x, Y, and 6 are going to change.

dx = x_j - x_i

dy = y_j - yi
dtheta = theta_j - theta_i

To construct the nice symmetric isosceles triangle of speed
that we want, we'll do some array juggling. First construct
the ramp-up portion with its peak on the far right by
generating an array of all ones, then doing a cumulative sum
across them using the unfortunately named np.cumsum().
The cumulative sum is the discrete version of the cumulative
integral. The value at each point is the sum of all the original
array values that came before.

right_triangle = np.cumsum(np.ones(dt))

Here's the pattern that results.
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To create the trailing edge we can use the Numpy indexing
trick for reversing an array, [ : :-1]. It says to start at the end
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of the array and walk back toward the beginning one
element at a time.

left_triangle = np.cumsum(np.ones(dt))[::-1]

And after verifying this in a bar chart, we can see that it
makes a perfect left-leaning triangle.
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The np.minimum() function will combine them in the way we
want, taking the lower of the two values at each point.

triangle = np.minimum(right_triangle, left_triangle)
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This triangular shape is exactly what we are after. The only
question that remains is how tall it should be. We’re going to
take a shortcut on the math for figuring out the velocity and
position at each time step. We just need a velocity profile of
the right shape. It’s OK if it is not scaled correctly, because
our next step is to normalize it — to divide every value by
the sum of all the values.

triangle *= 1 / np.sum(triangle)

After normalizing, the sum of all the velocities over all the
time steps is one. We don't know what the peak velocity is
and we don't have to care. The next step is to take the

cumulative sum of these to turn them into a progress tracker.

progress = np.cumsum(triangle)
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This results in a set of points that progress from 0 to 1.
Notice they start slow, move quickly through the middle,
and then end slow again. This is the fraction of total distance
covered. In this form we can scale it with the total distance
covered in each dimension-dx, dy, and dtheta—to get the
position in each dimension over time. Adding these to the
initial values of each gives us the position at each time point
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in each dimension for a trajectory with a triangular velocity
profile.

X_t = x_i + progress * dx
y_t y_i + progress * dy
theta_t = theta_i + progress * dtheta

These last two steps we will re-use. For a speed profile of
any shape, or we can generate an array describing it. We
don’t need to worry about scaling, because the next step is
just to normalize the speed profile so that the whole thing
sums up to one. In this form, it describes what fraction of the
trip should be taken in each time step.

You can run this yourself or take a look at the result at
tyr.fyi/4triangular. Notice how smoothly the ship stops and
starts. It has a sense of mass, a feeling of momentum. Watch
it back to back with the constant velocity animation to get a
sense of how much of an improvement it is.

You could stop right here

This concludes our coverage of the tools we'll need to
animate robots. The ability to plot points and polygons and
move them around at will gives us the power to transmit a
ton of information to a human eye. It's also great for
showing off cool things you've built. We're going to have a
lot of fun with this in subsequent chapters.

The rest of this chapter focuses on how to make movement
look like a human waving their hand around in the air. This
is a rabbit hole I got to crawl down during my PhD research,
and I couldn't resist sharing it with all of you, however


http://tyr.fyi/4triangular
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tenuously relevant. If you tell me you read and enjoyed it
out of politeness, I promise not to ask any uncomfortable
follow up questions.

Minimum-jerk

How things move matters. As humans we have a few
perceptual superpowers, things that we are especially good
at picking up on. One of these is patterns and quirks of
movement. We can identify a friend from a long way off by
how they walk, before they are close enough to see their face.
You can even tell a lot about their state of mind. They'll
move in noticeably different ways when they are angry,
exhausted, nervous, sad, or jubilant.

Looking very closely at how a human makes simple
movements, moving their hand in front of them from one
point to another, shows a fascinating pattern. It's a smooth
movement, starting from rest, ramping up to a peak speed,
then easing back to rest again. But when measured and
analyzed, it's quite distinct from the triangle velocity curve
we just created. It's bell-shaped. There are no sudden jumps
in acceleration.

After comparing a lot of candidate models for describing
this, one that does a surprisingly good job is a minimum-jerk
curve. For the curious, it is the velocity curve that results
from minimizing the integral of the square of jerk, the
derivative of acceleration. But that's not the important part.
What matters is that the progress from point-to-point, the
fraction of the total distance covered, can be expressed as a
concise 5"-order polynomial
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progress(r) = 10(r)® — 15(0)* + 6(z)°

where 7 is the normalized time, 0 at the start of the
movement and 1 at the end. Substituting in a 0 for r gives
progress(0) = 0 and substituting in a 1 for z gives progress(1) =
1, as we would hope. This is a continuous version of the
progress plot we made two pages ago.

Looking at the slope of the progress curve, the normalized
speed profile, we can observe how it is similar to the
triangular speed profile and how it's different.

normalized speed
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Both of them start and end with a speed of zero, reaching a
peak at the halfway point. Both are symmetric about the
center. But where the peak of the triangle is sharp, the peak
of the minimum jerk curve is smooth and rounded. And the
start and the end of the min-jerk curve are somewhat
flattened. They take their time getting going and settling
back down.
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These translate into some subtle but noticeable differences in
the min-jerk progress curve.
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Because the speed curve's peak is rounded and spends more
time close to its maximum value, the center portion of the
progress curve resembles more of a straight line. And
because of the flattened ends of the speed curve, the ends of
the progress curve are also flattened. The min-jerk curve
takes more of its movement time to get going and to slow
back down.

Now take a look at the spaceship animation with minimum
jerk point-to-point movements at tyr.fyi/4minjerk. If you
toggle between it and the triangular speed profile animation
(tyr.fyi/4triangular) you can see a subtle difference in the
quality of the movement. To my eye, the min-jerk
movements look more organic, and the triangular speed
profiles look more like a precision robot at work.


http://tyr.fyi/4minjerk
http://tyr.fyi/4triangular
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Your opinion on the aesthetics may be different. The
important thing to notice here is that subtle differences in
how a thing moves between two points conveys a different
feel.

The difference is more than aesthetic. If we were to break
down both the triangular and minimum jerk speed profile
into their respective sinusoidal frequency components by
means of a Fourier transform, we would find that the
triangular profile has more high frequency content. In order
to make those sudden changes in acceleration, you have to
include a lot of high frequency sine waves. This is more than
a mathematical curiosity. In practice, this means that any
high frequency dynamics of your robot can be excited when
you move. It's the same thing that happens when ringing a
bell. A hammer strike has most of its energy at higher
frequencies. This allows it to excite the high frequency
vibrational modes of the bell, to get that bell really
resonating for us, making a pleasing peal. In a robot this is
not what we want. There are lots of mechanical pieces of all
sizes that we hope will stay rigid. We like to pretend that
robot arms do not bend and that sensors move steadily and
gradually, rather than shaking rapidly. Exciting high
frequency modes of vibration in our apparatus is an
invitation to fatigue, malfunction, and catastrophic failure.

A minimum jerk speed profile, on the other hand, can be
represented using mostly lower frequencies, due to its
smoothness. Even when executed at high speed it doesn’t
excite high frequency vibration nearly as much as a
triangular speed profile. There are good practical reasons to
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make smooth point-to-point movements when working with
mechanical hardware. It's more than just looking cool.

I promise I'm not bored. This is my interested face.
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Logit-normal

Interestingly (to almost no one besides myself), minimum
jerk is not even the smoothest of smooth speed profiles.
There is a more complex variant shown to fit human
movements even better than minimum jerk, called the
logit-normal. Although in fairness to minimum jerk,
logit-normal cheats by being able to modify its skew (leaning
from one side or the other) and kurtosis (thickness of the
central peak).

The difference between logit-normal and minimum jerk is
subtle, and probably not observably different to the human
eye, but it has some fun properties. Our constant velocity
movement was discontinuous. Velocity jumped suddenly
between zero and a steady value. Another way to say that is
that it was discontinuous in the first derivative of position.

The velocity of our triangular velocity speed profile was
continuous, but its acceleration was discontinuous. It
jumped between zero, a positive value, a negative value, and
back to zero. It was discontinuous in the second derivative of
position.

The velocity of our minimum jerk curve was continuous, as
was the acceleration, but it did have a discontinuity in the
third derivative of position, jerk.

Logit-normal is infinitely differentiable. There is no
derivative of it that is discontinuous at any point. I don’t
know if that’s practically significant, but it’s pretty damn
cool.
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The shape of the speed profile can be expressed directly as a
function of normalized time, , which varies between 0 at the
start of the movement and 1 at the end. It is given by

1 - 752
r(l—?:)e )

v(r) =

for z>0and 7z <1 and is 0 otherwise.

This seems like a sprawl of symbols (and it is) but we can
break it down a little bit. It might remind you of the Normal
distribution.

II.\'—;JII2

f) = e

We can ignore the factor out front.

1

o\ 2x

It's a constant, and we are focused on the shape of the curve,
rather than its amplitude. It gets rescaled away when we
normalize it.

We can get one step closer if we take out the x and substitute
in the logit function.

logit(t) = log(l—;)
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The logit is good for lots of things in statistical modeling, but
it's particularly well known as a log-odds-ratio. Notice that
when 1is 0 or 1, it behaves terribly. In fact, it is only defined
on the open interval (0, 1).

And the last step to building the logit-normal is to add a
1/1(1 - 1) term to the beginning of the equation.
Mind-twisting factoid: this happens to be the derivative of
the logit! I'm sure this is important for some reason, and I'm
awaiting the day when a patient mathematician will explain
it to me.

The logit-normal has quite a bit of flexibility in the shape it
can take. The pu parameter controls skew. p > 0 makes the
peak lean to the right (the maximum speed occurs later in
the movement) and u < 0 does the reverse. 1 = 0 gives a
symmetric curve. The ¢ parameter controls the fatness of the
central curve. ¢ = .7 is an approximate match to the shape of
a minimum jerk curve. A higher value of ¢ gives a thicker
peak-it inches closer to a constant velocity movement. A
lower value of ¢ gives a thinner peak. It gets going slowly,
rushes through the middle of the movement, then takes a
longer time to slow back down.

To make point to point movements look just a little more
organic, we can randomly vary p and o a little bit. When you
fit logit-normal curves to actual human movements, there is
some variation in their skewness and kurtosis. Adding in
this subtle variation gives the movements an extra texture
and helps them seem as if someone is puppeting the object
by hand.
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Another trick is to overlap subsequent movements a little
bit, rather than having the object come to a complete stop.
This is a thing that humans do in the course of making
normal movements. In fact, the more skilled they are, the
more overlapped and blended together these movements
become. Because they become small components of a larger,
composite movement, it's helpful to refer to these individual
pieces as submovements.

Take a moment to watch the end result at tyr.fyi/4logit.

To my eye it almost looks like a toddler waving a toy
spaceship around, making PEW PEW PEW noises. The
overlapped submovements blend the legs of the triangle
together, and make the rotations smoothly integrated with
the rest of the movement.

Making an animation as human-like as we can is a fun
exercise, but probably more for its entertainment value than
anything else. Its real value will come later, when we're
actually making hardware move. When commanding an arm
or a leg or a finger or a tentacle to move from one point to
another, we have to be very specific about how we tell it to
get there. Specifying a super-smooth logit-normal speed
profile will minimize wear and tear on our hardware. It will
keep us from unnecessarily making it "ring" at higher
frequencies and avoid some really pathological failure
modes.

Historically, robots have gotten around issues of shaking,

bending, and vibration by being built more rigidly. Linkages
are thicker and heavier, bearings are more tightly toleranced,
gears are more precisely machined. To make all this move in
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a controllable way, actuators also have to get beefier, and
power supplies have to grow proportionally as well. The
result is a chonky behemoth-heavy, expensive, and despite
its over-engineering, delicate.

Making smoother movements is a way to break this cycle.
Floppy robot arms and jittery sensors behave better when
moved in a way that doesn't excessively excite high
frequency resonances. Lower rigidity requirements means
hardware becomes lighter, cheaper, and less power hungry.
Smooth movements open up entire new platforms and price
points for experimentation. It's a democratizing force.

In addition, it's also nice to have hardware that moves in a
predictable way. We humans are so familiar with our own
smooth movements, as well as those of others, that we can
predict the end point of a movement in flight with surprising
accuracy. This short term prediction capability allows us to
make corrections for our own movement errors before we're
even done committing the error. And it makes it easier to
interact with other movement-makers when you can guess
where they're headed in the next half second. By making
robots move in a way we're already programmed to
recognize, it might make them more natural to interact with.
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What's next?

I can't believe you stuck around for that whole tangent. As a
reward, here's a sneak preview of the next chapter.

Now that we can animate things, we need to think more
about the worlds that we will be animating. They will all be
based on the physical world. Robot arms and wheels and
grippers and linkages and actuators will all be doing their
thing in an imagined world, patterned after our own. Objects
will have mass and occupy space. Newton's Laws will be in
force. We hope that whatever cleverness we manage to
encode to navigate simulated worlds will help robots to do
the same thing in our world. For this, the rules in
simulations need to resemble those that physical robots face
as closely as possible. This is what we'll tackle in the next
chapter—simulations with plausible physics.
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Recap

Matplotlib is a flexible plotting library for Python. It's
tightly integrated with Numpy.

Matplotlib is built using an Object Oriented Programming
approach. Almost everything important is defined as an
object class, with its own attributes (variables) and methods
(functions).

The animation process we use is to repeatedly modify the
data underlying Line and Patch objects, updating the plot
each time.

The similarity preserving transformations of scaling,
rotation, and translation can be performed via matrix
multiplications. It's important to properly account for the
object's anchor point.

The way in which an object moves from point to point
strongly affects how it is perceived by a human viewer.
Smooth speed profiles, such as minimum-jerk and
logit-normal, are particularly easy on hardware and
reminiscent of human movement.



Making Animations with Matplotlib

Resources

Matplotlib can do a lot, and it is a big package. Luckily there is some
fabulous documentation at tyr.fyi/4matplotlib. I pulled out some of the
pieces that I find myself searching for all the time and collected them at
e2eml.school/133. It has all the tricks I use to get plots looking just the
way I like.

Equations were generated in a Jupyter notebook equations.ipynb at
tyr.fyi/4files.

Figures were generated using the Python script figures.py at tyr.fyi/4files.

Way back before he was my PhD advisor, Neville Hogan made the
observation that minimum-jerk velocity profiles fit human movements
surprisingly well and, as a bonus, have a strong motivating principle.
Reza Shadmehr did a great overview and derivation of the concept at
tyr.fyi/4shadmehr.

Neville Hogan (1984) Adaptive control of mechanical impedance by
coactivation of antagonist muscles. IEEE Transactions on Automatic
Control. AC-29: 681-690. tyr.fyi/4hogan

Nine years later Plamondon et al. compared a looooong list of speed
profile candidates together and found that logit-normal
(tyr.fyi/4logitnorm) fit better than any of them. They referred to it with
the descriptive name "support-bounded lognormal" and rearranged the
parameters, but it was the logit-normal underneath.

Réjean Plamondon, Adel M. Alimi, Pierre Yergeau, Franck Leclerc (1993)
Modelling velocity profiles of rapid movements: a comparative study.
Biological Cybernetics. 69, 119-128. tyr.fyi/4plamondon
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