Getting Processes to
Talk to Each Other

How to Train Your Robot
Chapter 3

Brandon Rohrer

Copyright © 2022 Brandon Rohrer
All canine photos courtesy Diane Rohrer
All rights reserved

How to Train Your Robot

Chapter 1:
Can't Artificial Intelligence
Already Do That?

Chapter 2:
Keeping Time with Python

Chapter 3:
Getting Processes to
Talk to Each Other

About This Project

How to Train Your Robot is a side project I've been
working on for 20 years. It's a consistent source of
satisfaction. A big part of the joy is sharing my progress
as I go, and who knows? maybe someone will find it
useful.

This is already the third chapter. It's also the longest. If
you extrapolate, chapter 17 will be 500 pages.

Up, up, and away.
Brandon

Boston, USA
November 1, 2022

Getting Processes to
Talk to Each Other

Chapter 3
In which we teach programs to share.

We’ve made some good progress already on our journey
toward human directed reinforcement learning. In
chapter 2, we laid an important foundation block with
timekeeping by building a pacemaker. In this chapter,
we’re going to lay another cornerstone: inter-process
communication. We'll construct a way to get different
programs to talk to each other that is as straightforward
and as unbreakable as we can make it.

How to Train Your Robot

Do we really need more than one
process?

It's not immediately obvious why enabling programs to
talk to each other is important for doing robotics, but it
turns out that it is. The nature of a robot is that there is a
lot going on. Motors need controlling. Sensors need
reading. Actions need planning. Visualizations need
animating. While it’s theoretically possible to do all of
this in a single process, breaking these tasks out into
separate processes streamlines development and lets the

robot harness the computing power of multiple

Joint Pressure
encoder sensor

Processors.

Motor Path Human
controller planner interface

Visual Visualization
processing rendering

Hypothetical process diagram for a robot system.

Also, it is often the case that processes are running on
different pieces of hardware. Sensor and actuator

Keeping Time with Python

controllers are often on the robot itself, very close to the
action. A process driving the human interaction will
likely sit on a laptop in front of the operator. And,
depending on the nature of the planning algorithm, it
might be running on the operator's laptop, a separate
workstation, in the cloud, or perhaps a combination of
all three.

These processes typically work at very different time
scales. The planner may update several times per
second. Actuator control might be adjusted dozens of
times per second. Sensors can report readings hundreds
of times per second. And the human interface might be
entirely asynchronous, driven by keyboard inputs
whenever the human decides to make it happen. The
need for working at different timescales also lends itself
to having separate processes.

The ability to pass messages between processes is so
critical to robots that it is the core functionality of the
Robot Operating System (ROS'). ROS helped out a lot of
robotics researchers by providing a message passing
framework. It set up a reliable way for processes to send
and receive messages. This has saved many collective
years of grad students' time by removing the need for
them to hack something together to meet that need.

How to Train Your Robot

In this chapter, we won't try to re-create anything of the
sophistication or performance levels of ROS, but we're
going to build something with a similar function. As we
will see, it’s not trivial to get this right. But by the time
we're done, we'll have something that is good enough
for our purposes-simple, serviceable, and
straightforward to explain.

Why not threads?

Before we go to all the work to help processes talk to
each other, it’s worth asking whether there is an easier
way. Each process has its own memory and resources.
There is no simple way to share variables. Any
interaction between processes requires the involvement
of the operating system. It's all kind of a pain in the butt.

Threads are a different story. They mostly act like
processes. They let you handle separate lines of
computational reasoning in parallel. They don’t have to
operate in lockstep with each other. On top of this, they
have a huge advantage: they can share memory. You can
create variables that multiple threads can see and
modify. It would solve all of our communications
problems if we could just use threads.

Unfortunately, threads aren’t the tool we're looking for.
Even though they seem to run in parallel, they actually

Keeping Time with Python

just take turns with each other really fast. They are still
limited by having to take place on a single processor.
This is a problem when you are trying to do a lot of
computation. You could quickly run out of CPU cycles.
Threads don’t let you parallelize across multiple
processors.

Threads also make the system fragile. If one thread
crashes or freezes, the entire program ceases to function.
This isn't consistent with our design goal of having a
robot that can keep functioning when an individual
piece fails. Threads are good for quick, lightweight
tasks. They are not a good fit for the fiercely
independent parallel processes we plan to construct in
our robot work. The extra robustness we get from
processes is definitely worth a little extra labor up front.

All this thread talk is exhausting. Get to the good part.

How to Train Your Robot

Counting concertgoers

It’s time to take these abstract ideas and make them real.
We're going to build a people counter. Imagine you've
been asked to watch the entrance to a Billie Eilish®
concert and count the number of people going in.

Hand tally knitting row counter.
Storye book, CC BY 3.0, via Wikimedia Commons.

You could use one of those handy little thumb clickers
that lets you push once for each person and keeps a
tally. But there are so many people going in so quickly
that you decide you'd be better off being able to
increment by several people at a time. They are flowing
by fast, but you can visually pick out groups of three,
four, and five, and key them in much faster than you
could one at a time. And so you set out to build a better
people counter.

https://commons.wikimedia.org/wiki/File:Hand_tally_and_knitting_row_counter_007.jpg
https://creativecommons.org/licenses/by/3.0

Keeping Time with Python

keypresses

Interface

Process diagram for a people counter.

There are two programs doing most of the work here.
The first one is the keyboard interface that keeps track of
each time you hit a digit. The second is an adder that
sums the numerical values of all of the keys that you hit,
keeps track of the total, and shows it back to you. Of
course it would be straightforward to include these in
the same program, but this example is just a thin pretext
for building out some functionality that we are really
going to appreciate later.

Install the getkey package

Even though our people counter process diagram is
simple (Two boxes and one arrow! How cute!) it will be
helpful to build it up methodically, one piece at a time.
We'll start with the key pressing interface.

Surprisingly, there’s no built-in Python function for
getting individual keypresses. There is an input()
function that reads typed input from the keyboard, but
you have to hit the Enter key each time to get it to read.
This requires much more coordination and attention
than we want for our application. Imagine that, while

How to Train Your Robot

counting people, someone misses the Enter key between
a2 and a 3. Then they will accidentally report 23 people,
rather than 5. That's a whole mess of mistakes waiting to
happen.

Python can read single keypresses, but the details of
how it does this vary by operating system. To handle it
correctly, Python has to look at what operating system it
is using it and then adapt its behavior. It can do all of
this just fine, but it’s more complicated than a single
built-in function.

Thankfully, enterprising developers have run into this
problem before and done all of this work for us. The
getkey package is a piece of open source software that
we can download and drop into our program. It's
common practice, when one discovers a gap in Python's
capabilities, to write a package meeting that need and
share it with the community. A popular place to host
these packages is PyPI’, the Python Package Index. It is
integrated with Python’s built-in package manager, pip,
to let you download and install new packages from the
command line. In my case I would use this command.

Keeping Time with Python

S python3 -m pip install getkey

Collecting getkey
Downloading getkey-8.6.5.tar.gz (13 kB)

Preparing metadata (setup.py) ... done
Building wheels for collected packages: getkey
Building wheel for getkey (setup.py) ... done

Created wheel for getkey:
filename=getkey-0.6.5-py3-none-any.whl size=11439
sha256=135debb14bce179bbe88959e3dde229f66b7575b5b75f1db
6b865f5efada85c8

Stored in directory:
/tmp/pip-ephem-wheel-cache-hxuahrzl/wheels/46/31/db/887
db397dcf4cOcdadfcca2918c2d2233dd2266bb7efal1dc4
Successfully built getkey
Installing collected packages: getkey

Attempting uninstall: getkey

Found existing installation: getkey 0.6.5

Uninstalling getkey-0.6.5:

Successfully uninstalled getkey-0.6.5
Successfully installed getkey-0.6.5

This tells pip to go search PyPI for a package named
getkey, download it, and install it. The python3 -m at the
beginning ensures that the package will be associated
with the particular instance of Python that gets called
when I type python3 at the command line. All the output
that follows is just my computer's verbose way of telling
me that everything went fine.

How to Train Your Robot

Avoiding Python environment hell

A common and valid criticism of Python is that it can be
hard to keep track of your environment. It’s completely
legal, and even common, to have several different
versions of Python on your computer at once. As of the
day I wrote this, the most recent Python version is 3.10,
although 3.11 is getting very close to being released. But
there are also a handful of earlier versions all being
actively maintained. At any given moment several or all
of these might be installed on your computer.

It may be helpful to think of Python versions as being
separate programs entirely. It’s like having Chrome and
Firefox and Safari all installed on your laptop. You can
change your settings and add bookmarks in Chrome,
but that won't affect your experience in Firefox. There
are web pages that work in Firefox that won’t work in
Safari. They are separate programs, separate executable
files in different directories, and even though their
behavior is mostly similar, it can be different in
important ways.

To make things more complicated, you can have more
than one environment, that is, more than one unique
collection of Python packages and settings, associated
with a given Python installation. If you add a new
package, it’s a different environment, if you change the

Keeping Time with Python

version of a package, it’s a different environment. And
very often programs that run in one environment will
behave a little bit differently in another, or not run at all.

There are some handy tools for juggling environments,
but they come with their own learning curves. We are
going to save them for a later chapter. For the meantime,
the cheat I recommend is to always tell the computer
exactly which Python interpreter I want it to use. When
I type python3 at the command line, that refers to a
particular instance of Python, the same one every time.

If you are using an IDE or a notebook, you may have to
do a little extra legwork to make sure you know which
version of Python it’s using. If you run out of patience
with that approach, a convenient end run is to use your
IDE as a code editor only, and run all your scripts from
the command line.

Anyone with experience can tell you that this is a pretty
lame answer. It’s like when you go to your doctor and
say "Doctor it hurts when I do this!" and she says "Well
maybe stop doing that?" Yes, it removes the immediate
source of pain, but doesn’t do anything to treat
underlying symptoms. The only excuse I have for
serving such weak tea is that when treating the
underlying symptoms requires a bit of surgery,

How to Train Your Robot

sometimes a quick fix Band-Aid is OK while we get our
affairs in order.

Get keypresses

Back to business—-now we have the getkey package. It's
an instant upgrade to our abilities. It’s as if we dialed
Tank from within the Matrix and asked him to upload a
pilot program for a B-212 helicopter. Suddenly we can
do things we couldn’t do before.

In this case, we can get a keypress. It’s not as impressive
as flying a helicopter, but it's a lot more helpful for
counting Billie Eilish fans. The way we invoke this is by
importing a function called getkey from the package
module called getkey. With this trick we can create a
sandbox to test the keypress interface.

from getkey import getkey

while True:
key = getkey()
if key in ["1", "2", "3", "4", "5", "e", "7", "8"]:
print(f"key pressed: {key}")

interface_sandbox.py

The getkey() function sits and waits for a key to be
pressed. Since we want to count concert attendees, we
are only interested in non-zero digits. There is a check

Keeping Time with Python

whether the key pressed is 1 through 8. If so, it gets
acknowledged with a print statement. Our sandbox sets
up an infinite loop and will keep doing this until we get
bored or its battery dies.

$ python3 interface_sandbox.py

key pressed:
key pressed:
key pressed:
key pressed:
key pressed:
key pressed:
key pressed:

A O W N b ©

You can also try pressing other keys to verify that they
get ignored.

Add numbers together

Now that we can read number keys in, the next step is
to build a process that adds them together. This adder
will be a little fancier than most. Not only do we want it
to collect our keypresses and calculate a total, but we are
going to constrain it to work periodically, on the clock,
with a heartbeat.

How to Train Your Robot

from pacemaker import Pacemaker
import numpy as np

clock_freq_hz = 2
pacemaker = Pacemaker(clock_freq_hz)

ppl_count = ©
while True:
overtime = pacemaker.beat()

ppl = np.random.randint(9)
ppl_count += int(ppl)
print(f"ppl_added: {ppl}, total_ppl: {ppl_count}")

adder_sandbox.py

For now, we’ll generate some small, random integers to

be added.

ppl = np.random.randint(9)

For the heartbeat, we’ll use the pacemaker method we
developed in chapter 2. We've wrapped this neatly in its
own module so that all we need to do now is to import
the Pacemaker class,

from pacemaker import Pacemaker

Keeping Time with Python

initialize it with our update frequency,

clock_freq_hz = 2
pacemaker = Pacemaker(clock_freq_hz)

and have it keep pace in our main loop.
overtime = pacemaker.beat()

When we put these pieces together and run it, The
adder does exactly what we hope, generating a running
sum of these numbers on a regular cadence.

S python3 adder_sandbox.py

ppl_added: 2, total_ppl: 2
ppl_added: 4, total_ppl: 6
ppl_added: 7, total_ppl: 13
ppl_added: 6, total_ppl: 19
ppl_added: 4, total_ppl: 23
ppl_added: 2, total_ppl: 25
ppl_added: 5, total_ppl: 30
ppl_added: 5, total_ppl: 35

The regular clockwork nature of this code is a little bit
forced, but it will set us up well when we go to solve
more complicated problems.

How to Train Your Robot

Our pacemaker code from chapter 2 we folded into a
class.

import time

class Pacemaker:
def __init__(self, clock_freq_Hz):
self.clock_period = 1 / float(clock_freq_Hz)
self.last_run_completed = time.monotonic()
self.start_time = time.monotonic()
self.i_iter = -1

def beat(self):
self.i_iter += 1
end = (
self.start_time +
(self.i_iter + 1) * self.clock_period)
sleep_time = end - time.monotonic()
if sleep_time > O:
time.sleep(sleep_time)

this_run_completed = time.monotonic()
dt = (
this_run_completed -
self.last_run_completed)
overtime = dt - self.clock_period
self.last_run_completed = this_run_completed
return overtime

pacemaker.py

If this is your first exposure to classes, it's OK to ignore
them for now. The important bits to understand are that
there is an __init__() function that gets called to set the

Keeping Time with Python

pacemaker up, and then a separate beat() function that
gets called to advance to the next time step. The
advantage of having Pacemaker be a class is that it can
track its internal attributes, like when it started
(self.start_time) and how many beats it has executed
so far (self.i_iter). It hides the details so we don't
have to keep track of them in the main code. It keeps
our adder code cleaner.

Pass keypresses through a Queue

Now we get to the critical nugget of this chapter,
connecting these two separate programs, so that they
can talk, specifically so that the interface can pass
keypresses to the adder.

In our process diagram, this is the arrow that connects
the two. In Python, we do this by using a queue
(pronounced like the letter "Q", for all us Americans
who have never encountered the word at a
supermarket).

How to Train Your Robot

A queue serves as a separate staging ground, a
temporary holding pen for objects we want to pass
between processes. We'll be working with a first-in,
tirst-out (FIFO) queue.

Queue A
put() .- get()
keypresses S keypresses
go to the g g 0‘5’_ come from
back 7|8 the front
of the line of the line

-

There are two things we are going to want to do with
our queue, put objects and get objects. The interface will
put keypresses into the queue and the adder will get
those keypresses after they happen. To see how this is

implemented, let’s take a look at the interface, including
the queue.

\S

Keeping Time with Python

import time
from getkey import getkey

def run(q):
last_key = "@"
while True:
key = getkey()
key_ts = time.time()

if key in [
"1, "2", "3", "4", "5",
"e", "7", "8", "9"]:
q.put((key_ts, key))
print(

f"ts: {key_ts}, ppl_reported: {key}")
last_key = key

if key ==
remove_ppl = str(-int(last_key))
g.put((key_ts, remove_ppl))
print(
f"ts: {key_ts}, ppl_undo: {last_key}")
last_key = "0"

interface.py

The first difference we see is that we’ve defined a run()
function that takes the queue variable (cleverly named
q) as an input argument. Doing it this way is necessary
for reasons we will see in a few pages. For now, we’'ll

skip over it.

How to Train Your Robot

The really important bit here is where the pressed key
gets put into the queue.

q.put((key_ts, key))

This function call puts whatever object it receives as an
argument into the queue. In this case, we are passing a
tuple containing the timestamp when the key was read,
and the key that was pressed, (key_ts, key).

In a nod toward the fallibility and comfort of our users,
we'll also add the option to undo one keypress. If the
user hits the space bar, it will undo their previous
keypress by sending the negative of it.

if key == " "
remove_ppl = str(-int(last_key))
q.put((key_ts, remove_ppl))

For consistency, this has to be a string, so we convert the
last_key to an integer, take the negative, then convert it
back into a string. In both cases, we also print the
keypress sent and the timestamp to the console just so
that we can monitor what’s going on.

The calls to q.put() are the base of the arrow connecting
the interface to the adder. To build the head of the arrow,
we need to modify the adder as well.

Keeping Time with Python

import time
from pacemaker import Pacemaker

clock_freq_hz = 4
clock_period = 1 / float(clock_freq_hz)
pacemaker = Pacemaker(clock_freq_hz)

def run(q):
ppl_count = ©
while True:
overtime = pacemaker.beat()
if overtime > clock_period:
print(
f'"ts: {time.time()}"
f"overtime: {overtime}")

while not g.empty():
timestamp, ppl = g.get()
print(f"ts: {timestamp}, ppl_added: {ppl}")

ppl_count += int(ppl)

print(
f"ts: {timestamp}",
f"ppl_count: {ppl_count}")

adder.py

Here the modifications are similar. After initialization,
the adding code is wrapped in a function called run(),
which takes a queue as an input argument, and then
there is the code that reads from the queue.

How to Train Your Robot

When reading a queue we have to be prepared for
several outcomes. There might be one thing in the
queue, or there might be many, or there might be none.
To handle all of these cases, we set up a while loop.

while not q.empty():
timestamp, ppl = g.get()

On each iteration it first checks whether the queue is
empty. If it’s not, it gets an object from the queue-the
one that has reached the front of the line, the one that
has been in the queue the longest. Because we know we
passed a tuple containing the time stamp and the
keypress showing the number of people counted, we
unpack that tuple from the queue into timestamp and
ppl. For visibility, we also print them in the console.
Then our adder does its work and increments our
people count accordingly, and we print the total as well.

Another change here to make our code more robust is
that when we call pacemaker .beat, we catch the return
value, the amount that the beat has gone overtime.

overtime = pacemaker.beat()
if overtime > clock_period:

We've added a check to make sure the overtime is not
ridiculous, for instance, an entire clock period. If it is,
then we print an error notice at the console to let the

Keeping Time with Python

user know. In a later version, we might want to take this
and raise an Exception, or take some other kind of
corrective action. But for now, we will be satisfied with
giving the user notice.

Tie the parts together

This gets us to the point where both our interface and
adder processes have run() functions that accept a

queue as an argument. The next step is to tie them all
together.

put get
keypresses 5 i keypresses

Interface

keypress "4
keypress "2"
keypress "5'

To do this we will make use of the multiprocessing

package in a top level script that kicks off both of our
processes and connects them.

How to Train Your Robot

import multiprocessing as mp
import interface

import adder
instructions = """

Welcome to the People Counter

Use keys 1-9 to count people.
Use space bar to undo your last keypress.

print(instructions)

q = mp.Queue()

p_interface = mp.Process(
target=interface.run,
args=(q,))

p_adder = mp.Process(
target=adder.run,

args=(q,))

p_interface.start()
p_adder.start()

ppl_counter.py

Keeping Time with Python

The important parts of this are creating the queue,
q = mp.Queue()

creating two new separate processes, one from

interface.run and one from adder.run,

p_interface = mp.Process(
target=interface.run,

args=(q,))
p_adder = mp.Process(
target=adder.run,

args=(q,))

then kicking off both of the processes by calling their
start method.

p_interface.start()
p_adder.start()

This script builds our process diagram for us. It creates
the interface and the adder block, creates the arrow that
connects them, connects the arrow to both blocks, then
starts the whole thing rolling.

How to Train Your Robot

Perhaps the trickiest part of this is the syntax for
creating a new process. For both the interface and the
adder processes, we instantiate a Process object and
pass it two arguments.

p_interface = mp.Process(
target=interface.run,
args=(q,))

The first is a named argument called target, to which
we pass the function that the process will run. In our
case, we want one process to have a target of
interface.run and the other process to have a target of
adder . run. The second named argument is args, a tuple
containing all of the arguments that should be passed to
the target function. (If this feels confusing, that's because
it is.) For our processes, both of our run functions look
for a single input argument containing the queue that
connects them. To indicates a tuple with a single
element, we use the construction (q,). It's how we show
that both of the run functions should be called with the
input argument q.

Keeping Time with Python

Despite the awkwardness of the syntax, this script isn’t
doing anything more complicated than creating all the
parts in our process diagram and connecting them
together. Thanks to the multiprocessing package, this
can occur in a readable way that is the same for every
operating system. Like the getkey package,
multiprocessing hides all of the operating system
specific details and takes care of all of the bookkeeping
and error catching that needs to happen for this to work
smoothly. I don’t actually know exactly how it works,
and thanks to the multiprocessing package I don’t need
to.

Unlike the getkey package, multiprocessing has been
adopted by Python's core maintainers and is officially
supported and gets distributed with every Python
download. There’s no need to pull it from PyPI You
already have it.

How to Train Your Robot

Now that our process diagram is fully defined, and
wired together, we can run the whole thing.

$ python3 ppl_counter.py
Welcome to the People Counter

Use keys 1-9 to count people.
Use space bar to undo your last keypress.

ts: 1664583456.8063445, ppl_reported: 7
ts: 1664583456.8063445, ppl_added: 7
ts: 1664583456.8063445, ppl_count: 7
ts: 1664583457.415506, ppl_reported: 4
ts: 1664583457.415506, ppl_added: 4
ts: 1664583457.415506, ppl_count: 11
ts: 1664583457.973959, ppl_reported: 8
ts: 1664583457.973959, ppl_added: 8
ts: 1664583457.973959, ppl_count: 19
ts: 1664583458.50361, ppl_reported: 6
ts: 1664583458.50361, ppl_added: 6

ts: 1664583458.50361, ppl_count: 25

And behold! We have a people counter that uses two
processes at once.

Keeping Time with Python

Keeping an eye on everything

We also have a really noisy stream of console output. In
its current form, we print a line every time a new key is
pressed, every time a new keypress is read, and every
time the total is updated. It’s confusing to follow. We are
in a bit of a bind, though. This level of verbosity is
indispensable when we are writing multi-process code
like this and need to debug it. And if anything should
happen while it's running, say one process freezes or
throws an exception, we would need to have some way
to detect it. Otherwise we are setting ourselves up for
some hair pulling debugging nightmares. You can just
imagine how this problem compounds as we scale up to
4 or 8 or 16 separate processes, all connected to each
other by several queues passing objects.

Luckily, as is often the case, someone else has already
had this problem and has come up with a great solution:

logging.

Logging is a lot like printing to the console, except
everything gets written to a text file instead. This keeps
the console nice and clean and preserves this precious
real estate for things that make the user happy. All the
historical records and useful information for debugging
is squirreled away in the log file.

How to Train Your Robot

The other thing this does is allow us to
programmatically scan and interpret these logged
outputs. Rather than needing to stare at the screen and
scroll around to find events of interest, we can read
them in with a script and pull out the parts we care
about.

The only thing I don't like about logging is that it makes
the code itself slightly harder to read. Logging requires
some extra initialization, and the logging statements
themselves are longer and not as straightforward as a
print statement.

Over/Under-engineering

This is a good example of the over-/under-engineering
trade-off. As code gets larger, more complex, used by
more people in a wider variety of situations, it can be
helpful to introduce tricks and structures to manage it.
Like logging, for instance. Knowing when to introduce
these measures is an art and a subject of heated debate.

On the one hand, you can wait too long and err on the
side of under-engineering. Under-engineering is natural.
It's inertia at work. Doing things the way we've always
done them is a good way to keep up steady progress.
Upgrades and migrations mean that everything has to
go on hold for a while. But given enough time and

Keeping Time with Python

growth, progress will gradually slow and eventually
stop altogether. What worked for a thousand-line code
base doesn't work for a million. What worked for three
developers doesn't work for three hundred. What
worked for a million users doesn't work for a billion. A
hint that you might be under-engineering is when
you're spending most of your time either waiting
around or dealing with problems other than writing,
testing, and improving your code.

On the other hand, you can jump the gun and err on the
side of over-engineering. There are good reasons to
avoid introducing extra tools and structure. They often
add a dependency on someone else's code that you can't
control and may not fully understand. They can add
complexity to your code and bloat your code base. They
can make it harder for new developers to understand
how your code works, discouraging them from
contributing. They can introduce new bugs of an
entirely different nature. (These can be devious and
pernicious.) Prematurely adding new engineering
features can make your system grow so complex that it
becomes practically impossible to change. Things you
might hear in an overengineering culture are "we're
going to need it sooner or later", "I really want to pull in
this new framework I read about", "let's just abstract that
out", "we should buy the xyz platform to take care of

How to Train Your Robot

non

that for us", "we have to prepare to scale by a factor of a
thousand".

The under-/over-engineering trade-off is hard because
there is no right answer. There are always really good
reasons to go either way, depending on what you most
care about, and smart well-intentioned people can care
about different things. It makes for a lot of fascinating
conversations and eye-opening discussions. It can also
make for some awkward compromises and frustrating
confrontations. But it's never boring.

My own guiding principle here is a rule of three. I wait
until the third time that something hurts before I
engineer it away. This seems to strike the right balance.
If I tried to fix everything the first time it hurt, I would
end up investing a lot of time in engineering solutions
for problems that I might never see again. But if I wait
until the tenth time something hurts, I've probably done
a lot of preventable suffering. Once a pain point comes
up three times, that indicates it’s likely to come up
again.

Keeping Time with Python

Overengineering isn't always a bad thing

My experience with logging is an example of this. When
I tirst released some open source code a while back, I
naively made a blanket solicitation for contributions. It
was maybe a thousand lines of code in all, and there
were several different modules and algorithms
involved. I had built and tested it using primitive print
debugging. One contributor made the not-unreasonable
addition of logging capability. It brought the code a step
closer to being ready for production. It also made the
code a little longer and added a dependency on another
package, which I had been trying to avoid. Most
importantly, it made the code just a little less readable.
The workings of the algorithms were obscured a bit by

How to Train Your Robot

the code required to set up logging and write the log
messages. It wasn’t wrong, but it addressed a pain point
that I hadn’t yet experienced, and it introduced some
small, but non-negligible cost. I politely rejected the pull
request and learned to be more specific about my
requests for contribution.

Fast forward to me trying to get multiprocess
communication working. There were print lines in
multiple processes printing to the same console in rapid
succession. Deciphering what wasn’t working and why
required scrolling through pages of console output,
making pen and paper notes, and trying to come up
with more creative ways to make informative print
lines. After the third time I sat thinking "There has got to
be a better way!" I stepped back and took the time to do
it a better way. I embraced the small investment of time
it took to properly set up logging and the small hit my
code took for conciseness and readability, and counted
them a bargain for the visibility it gave me into how my
code was working and what was going wrong.

The rule of three has more exceptions than not.
Sometimes a pain is recurring, but it's just not that big.
For example, I have to go through a bizarre dance of
unplugging and replugging HDMI cables to get my
Linux laptop to display on an external monitor. It takes
an extra five seconds every time I connect. There is

Keeping Time with Python

almost certainly a way to fix it, but even if it only took
me an hour to figure it out, that’s still more time than I
would spend fiddling with cables over the next few
years. It’s just not worth it to fix a problem that small.

On the other hand, sometimes problems are so big or so
predictable that it is worth it to engineer them out before
they even happen. I'm not waiting for my third
automobile accident before I start wearing a seatbelt.
And I'm not going to lose this chapter three times before
I start backing it up.

The biggest mistake I've seen people make in
over-/under-engineering decisions is being dogmatic
and inflexible. Some red flags: We should do it this way
because it’s the way we’ve always done it. Or because
that’s how they did it at my old company. Or because
that’s how BigTechCo does it. Or because I read a blog
post from that one person that said we should. Or
because it’s new and shiny.

Once you stop making engineering decisions based on
the particulars of your use case, you set yourself up for a
lot of waste and pain. The only truly wrong engineering
decisions I've seen are the ones that have been made
blindly without consideration for the quirks of the
situation as it is.

How to Train Your Robot

One convenience that logging gives us is the ability to
toggle different logging messages on and off. By default,
there are five levels, helpfully named DEBUG, INFO,
WARNING, ERROR, and CRITICAL in order of
increasing severity. When we create a logger, we can
specify what level it's going to operate at. For instance,
if we specify WARNING, then only log statements at
level WARNING and higher (ERROR and CRITICAL)
will be logged to the file. It's an easy way to get your
code to ignore unnecessary log statements. Then when
something goes wrong and you really need to dig deep,
you can go back into your code and set the logging level
to DEBUG and force it to log everything.

The mechanics of setting up logging aren’t pretty, but
they are only moderately onerous. To fully take control
over what gets written and where, we have to add a few
extra lines.

After importing the logging package and a couple of
helpful classes, we have to give it a name

import logging
from logging import FileHandler, Formatter
logger = logging.getLogger("interface")

and give the log file a name

log_name = f"{int(time.time())}_interface.log"

Keeping Time with Python

and specify the string format that we want to write.

logger_file_handler.setFormatter(
Formatter("%(message)s"))

The default formatter adds some helpful information,
but we are going all in on being control freaks, so here
we specify a format that writes exactly the message that
we tell it to write and nothing else.

By including int(time.time()) in the filename, we add
the whole number of seconds in the Unix time, ensuring
that the log filename will be unique and timestamped
(assuming that we wait at least one second before
creating a new log file). It's an extra touch of
convenience.

We have total freedom over what text we log. Literally
any string. It wouldn’t be unreasonable to log the same
strings we were previously printing to the console. That
gets all of the information we need stashed out of the
way where we can find it.

Unfortunately, that still leaves us with the problem of
potentially having to scroll through a lot of text to find
events of interest or patterns. To help out our future
selves even more, we’re going to use a trick that will let
us go back later with another Python script to read the

How to Train Your Robot

log file and make sense of it. We are going to write each
line as a JSON formatted string.

Logging with JSON strings

This might surprise you, but people and computers
speak very different languages. This gap gets bridged in
different ways. We have accepted ways for people to tell
computers what to do, called programming languages.
To complement that, it's also helpful to have ways for
people to tell computers about data. That's where JSON
comes in.

JSON is a way to describe data in text. It is
unambiguous; any two people or any two programs can
read the same JSON string and agree on what it means.
It's awkward for humans to read. If it helps, it's also
awkward for computers to read. It's a middle ground, a
compromise, a place where we can make a hand-off and
be confident that our data won't get mangled during
re-interpretation.

To help us with this, Python has a json package. It is
especially helpful for taking Python dictionaries and
converting them to JSON strings with the function
json.dumps(), meaning "dump string". Not
coincidentally, when you create a Python dict and

Keeping Time with Python

convert it to a JSON string, the JSON string looks a
whole lot like the dict creation syntax. The script

import json
log_dict = {"ts": 7777777, "ppl_reported": 7}
print(json.dumps(log_dict))

results in the console output

{"ts": 7777777, "ppl_reported": 7}

In our log files, the difference between our original print
logging and JSON-formatted logging is cosmetic. If the
console printed line looked like

ts: 1664317821.256342, ppl_reported: 9
the JSON-formatted version in the log file will look like
{"ts": 1664317821.256342, "ppl_reported": "9"}

Formatting each line of our log file as its own J[SON
string gives it a structure and machine readability that
we can use to great advantage later.

Once we've created the logger, we can add a line to the
log file with one of five functions—debug(), info(),

warning(), error(), and critical()—depending on the
severity of the message. If the severity level is included

How to Train Your Robot

in the logger's current severity range, it gets added to
the end of the log file. Here's how it all comes together
in the keypress interface.

import json

import logging

from logging import FileHandler, Formatter
import time

from getkey import getkey

valid levels are
{DEBUG, INFO, WARNING, ERROR, CRITICAL}
logging_level = logging.INFO
log_name = f"{int(time.time())}_interface.log"
logger = logging.getlLogger("interface")
logger.setlLevel(logging_level)
logger_file_handler = FileHandler(log_name)
logger_file_handler.setlLevel(logging_level)
logger_file_handler.setFormatter(
Formatter("%(message)s"))
logger.addHandler (logger_file_handler)

continued ...

Keeping Time with Python

def run(q):
last_key = "0"
while True:
key = getkey()
key_time = time.time()

if key in [
"1, "2", "3", "4", "5",
"e", "7", "8", "9"]:
g.put((key_time, key))
log_dict = {
"ts": key_time,
"ppl_reported": key}
logger.info(json.dumps(log_dict))
last_key = key
if key == " ":
remove_ppl = str(-int(last_key))
g.put((key_time, remove_ppl))
log_dict = {
"ts": key_time,
"ppl_undo": last_key}
logger.info(json.dumps(log_dict))
last_key = "@"

interface_logging.py

Despite the unsightly 13 lines dedicated to setting up

logging at the beginning of the script, the net effect for

the user is quite nice. The blast of printed console lines

goes away. Birds sing. Squirrels come out of their holes.

Peace returns to the meadow.

How to Train Your Robot

The adder with logging undergoes a similar
transformation.

import json

import logging

from logging import FileHandler, Formatter
import time

from pacemaker import Pacemaker

valid levels are
{DEBUG, INFO, WARNING, ERROR, CRITICAL}
logging_level = logging.INFO
log_name = f"{int(time.time())}_adder.log"
logger = logging.getlLogger("adder")
logger.setlLevel(logging_level)
logger_file_handler = FileHandler(log_name)
logger_file_handler.setlLevel(logging_level)
logger_file_handler.setFormatter(
Formatter("%(message)s"))
logger.addHandler (logger_file_handler)

clock_freq_hz = 4
clock_period = 1 / float(clock_freq_hz)
pacemaker = Pacemaker(clock_freq_hz)

Keeping Time with Python

def run(q):
ppl_count = ©
while True:
overtime = pacemaker.beat()
if overtime > clock_period:
log_dict = {
"ts": time.time(),
"overtime": overtime}
logger.error(json.dumps(log_dict))

while not q.empty():
timestamp, ppl = q.get()
log_dict = {
"ts": timestamp,
"ppl_added": ppl}
logger.debug(json.dumps(log_dict))

ppl_count += int(ppl)
log_dict = {
"ts": timestamp,
"ppl_count": ppl_count}
logger.info(json.dumps(log_dict))
print(f" {ppl_count} people ", end="\r")

adder_logging.py

Take note of how we use the different logging levels
here. In the interface, we register keypresses at the INFO
level, and in the adder we log them at the DEBUG level.
We are anticipating that if something is broken and the
processes are not communicating, we will need a copy
of what one process sent and what the other received so

How to Train Your Robot

that we can compare them. To do this, we would set the
logging level to DEBUG, as we have, and both of these
logging statements would get acted on. But if all we
want is a nice, chatty report of everything that
happened, we don’t need two copies of the keypress.
The copy generated by the interface process will suffice.
In that case, we would set the logging level INFO. We
also include a copy of the updated total each time a new
keypress is registered at the INFO level.

One thing here that we would really like to know about
is when the pacemaker clock pace is not kept. If a beat
goes overtime by more than one clock period, that
suggests something is not working as hoped. Because
this is a little higher priority, we log it as a WARNING.
We don’t have anything happening in this code that
would warrant an actual error log. Even if the
pacemaker detects a few missed beats, it can always
recover the next time around. But if anything horrible
did happen, we could log it as an ERROR. And if our
code was capable of detecting any existential threat to
humanity, we could log that as CRITICAL.

Keeping Time with Python

With all of our information being cleverly stashed away
into log files now, we leave the user without any visual
information about what’s going on. We can fix that with
a single line that prints the current people total.

print(f" {ppl_count} people ", end="\r")

I'm a big fan of the carriage return end character here,
end="\r". That means that after printing, the cursor will
return to the beginning of the line, rather than to a new
line. The net effect is that each successive line will print
over the previous one. Rather than filling up a screen
with print lines, it will just continue to update the one.

With logging in place, we need a new top level people
counter script to pull in the new interface and adder
scripts.

How to Train Your Robot

import multiprocessing as mp
import interface_logging as interface
import adder_logging as adder

instructions =
Welcome to the People Counter

Use keys 1-9 to count people.
Use space bar to undo your last keypress.

print(instructions)

g = mp.Queue()

p_interface = mp.Process(
target=interface.run, args=(q,))

p_adder = mp.Process(
target=adder.run, args=(q,))

p_interface.start()
p_adder.start()

ppl_counter_logging.py

Now we can run it and check the results. As hoped, we
see a single line status at the bottom of the console. It’s
not strictly necessary, but it’s always satisfying to the
user to know what’s going on, that the program hasn’t
crashed, and to see their keypress actions have some
immediate effect. What's really great about this is how
we can focus on the user's experience here. We no longer
have to worry about capturing all the information we

Keeping Time with Python

might need for reporting and debugging. We are taking
care of that elsewhere.

The console can now focus on being a user interface. We
can strip away anything that might be distracting to
someone using the tool in the heat of the moment. The
logs are for the developers (us). The console is for the
user.

A peek at the logs show that they are doing exactly what
we hoped. 1664318883_interface.log shows that it was
kicked off at UNIX time 1664318883, Tuesday,
September 27, 2022 6:48:03 PM in my time zone. An
arbitrary snippet from the middle of the log shows a
sequence of keypresses.

"ts": 1664318928.6324704, "ppl_reported": "5"}
"ts": 1664318930.604963, "ppl_reported": "2"}
"ts": 1664318934.3606267, "ppl_reported": "4"}
"ts": 1664318936.424587, "ppl_reported": "3"}
"ts": 1664318942.1853814, "ppl_reported": "
"ts": 1664318943.0344594, "ppl_reported": "
'ts": 1664318943.7946567, "ppl_reported":
"ts": 1664318945.192151, "ppl_reported": "3"}
"ts": 1664318945.9686284, "ppl_reported": "
"ts": 1664318946.5910223, "ppl_reported”: "
"ts": 1664318947.3454957, "ppl_reported": "

i i e e N e e N e N e N
a NN
~

NNN
-~~~

1664318883_interface.log

How to Train Your Robot

Because we set the interface logging level at INFO, we
can see all of the info logs about the process, and when
they occurred. We don’t have any other log statements
here, so it’s relatively uniform, but if we did, they would
all be interleaved in the order that they were added by
the code.

Taking a look at 1664318883_adder.log, we can also see
that it was kicked off at UNIX time 1664318883. This
happens to be the same UNIX time that the interface
was kicked off at, but it won’t necessarily be that way
every time. We are creating these log files in two
separate processes. This happens very quickly, so they
will often fall on the same second, but there’s nothing
that guarantees that they will.

“ts": 1664318993.9616911, "ppl_count": 286}
"ts": 1664318994.4360094, "ppl_count": 289}
"ts": 1664318995.121171, "ppl_count": 293}
"ts": 1664318997.585884, "ppl_count": 295}
"ts": 1664319000.7577388, "ppl_count": 298}
"ts": 1664319002.3956523, "ppl_count": 303}
"ts": 1664319003.0966415, "ppl_count": 298}
"ts": 1664319003.377368, "ppl_count": 304}
"ts": 1664319006.4533072, "ppl_count": 311}
"ts": 1664319007.957886, "ppl_count": 313}
"ts": 1664319008.7823172, "ppl_count": 316}
"ts": 1664319009.1996095, "ppl_count": 321}

e e Tt N N Tt Nt Nt e B e N T et

1664318883_adder.log

Keeping Time with Python

When we open it up, we again see just one type of log
message. Because we set the logger level to INFO for the
adder, it doesn't show keypresses received from the
queue, only the updates to the total. Our pacemaker was
very well behaved, so we don’t have any overtime
warnings to report. It's wonderfully convenient to have
all of this information hidden away out of sight in case
we should need it.

Catch bugs before they happen

While we have some momentum engineering our pain
away, there are two other tools that are worth putting in
our box: a code checker called flake8 and a code
formatter called black.

flake8 is a linter, a program that goes through our code
and looks for mistakes. It can’t catch everything, but
what it does catch is very helpful. When I am
disciplined and run flake8 on my Python code each time
I make a change, I save myself a whole lot of time. flake8
catches dumb mistakes that might not crash my code
until after it has been running for a minute or an hour.
Even better, sometimes flake8 catches mistakes that
wouldn’t have crashed my code at all. I would have
happily gone on thinking everything was fine, but
getting wrong answers. flake8 also flags weird things

How to Train Your Robot

like when I assign a value to a variable but never do
anything with it. Sometimes it means I created a nasty
bug. Sometimes it just means I got sloppy. Either way,
flake8 helps my code be better and saves me time down
the line.

You can install flake8 from PyPI with pip

$ python3 -m pip install flake8

and run it from the command line .

S python3 -m flake8 <filename>

To get a sense of what it can do, we can run it on some
code we know to be flawed.

infinity = 3/0
print(
infinity

bad_code.py

$ python3 -m flake8 bad_code.py

bad_code.py:2:1: E999 IndentationError: unexpected
indent

Keeping Time with Python

On flake8's first pass through the code it finds an
indentation error on line 2, character 1. That's obviously
not the only thing wrong with this code, but if it's
broken so badly that flake8 can't make sense of it, flake8
just reports what it has found so far and exits.

Some errors hurt more than others.

How to Train Your Robot

After fixing the indentation error, we can give flake8
another chance.

infinity = 3/0
print(
infinity

bad_code.py (indentation error fixed)

$ python3 -m flake8 bad_code.py

bad_code.py:3:20: E999 SyntaxError: unexpected EOF
while parsing

This time flake8 finds the missing parenthesis at the end
of line 3, which manifests as "Hey I got to the end of the
file (EOF) too soon. Something's messed up!"

infinity = 3/0
print(
infinity)

bad_code.py (fixed)

After adding this in, we can run flake8 yet again and,
like a grumpy teacher, it expresses its approval by
saying nothing at all. Even though this code has passed
the flake8 test, it's still not pretty. This is where black
comes in.

Keeping Time with Python

You can also install black from PyPI with pip

$ python3 -m pip install black

and run it from the command line

$ python3 -m black <filename>

When we run black on our bad code, it cheerfully lets us
know that it made some formatting changes.

$ python3 -m black bad_code.py

reformatted bad_code.py

All done! =
1 file reformatted.

Taking a quick look at the reformatted code shows a
couple of changes that make it easier to read. black
added a space to either side of the division operator, and
it put the print statement all on one line.

infinity =3 / ©
print(infinity)

bad_code.py (reformatted)

How to Train Your Robot

The name black is inspired by Henry Ford's assurance:
"A customer can have any color they want, as long as it
is black".* It reflects the opinionated formatting
approach that black takes.

There are many ways to format a particular piece of
Python code. You can break lines with a backslash or
using parentheses or not at all. When breaking lines,
you can indent them any amount you like. You can have
any number of spaces around operators and any
number of blank lines between functions, including
none at all. If these sound inconsequential, the heated
arguments they spark are anything but. And may
heaven help you if you wade into the battle over
whether to indent with tabs or spaces.

There is a more-or-less official style guide in the Python
Extension Proposal (PEP) 8. PEP-8° lays out a lot of
suggestions for the best way to do these things, but even
it leaves some wiggle room in places, such as whether to
break a line before or after a binary operator. black
eliminates this. According to black, there is only one
correct way to write any piece of Python, and it will
enforce that way on your code without asking and
without apologizing. On the one hand, you give up
some control. On the other hand, you stop having to
worry about where to break lines and add spaces. It

Keeping Time with Python

frees you up to spend less time agonizing over
formatting and more time watching unboxing videos.

Now that we've used flake8 and black to get our code in
order, we can finally run it.

$ python3 bad_code.py

Traceback (most recent call last):
File "bad_code.py", line 1, in <module>
infinity = 3 / @
ZeroDivisionError: division by zero

Sadly, there is still an error in it that not even flake8
could catch. Because Python is an interpreted language,
rather than a compiled one, the code doesn't actually get
thoroughly vetted until you run it. Value errors (like
dividing by zero) and type errors (like treating an
integer as a string) can't be caught until the interpreter
tries to run the code and stumbles. That's the deal with
the devil we make when we work with Python. We get
flexibility, readability, ease of use. We lose the
optimization and error checking that gets done during
precompiling. (If this bothers you tremendously, I
recommend looking at Rust® as an alternative.)

Despite the fact that they don't fix everything, flake8
and black save me enough time that they clear my very
high bar for inclusion in my typical workflow. As with

How to Train Your Robot

everything I suggest, try it out, see if it works for you,
and take or leave it as you please. There's no wrong
answer here. You're the ultimate judge of what works
for you.

As a sidenote, I do run black on all my code, and the
scripts in the repository are all black-formatted.
However, I've tweaked the code you see in the book
here. black tries to limit lines of code to no more than 79
characters long. At a readable font size, this page
doesn’t allow for quite that many. I go in and add some
extra line breaks by hand to accommodate us, but I try
to do it in a black-consistent manner.

Reporting

It’s finally time to take advantage of our fancy logging
format. We're going to show how this is done by making
a report of the people that have been counted so far.

To do this, we'll want to pull the running total of people
counted from the adder log and plot each update
against the time that it was observed. We can use the
standard Python incantation for reading in a text file one
line at a time.

with open(filename, "rt") as f:
lines = f.readlines()

Keeping Time with Python

Then we can iterate over each line, converting it from
string to JSON, then converting that to a Python
dictionary.

for line in lines:
row_dict = dict(json.loads(line))

And at this point we can run any checks we need to in
order to see whether this particular line of the log file is
interesting to us. We can check to make sure that it
includes a people counted field. If we wanted to, we
could also ensure that it fell within a particular time
range. For more complex and larger logs, this filtering
step is where we get to implement whatever logic tricks
we can conjure up to isolate the information that we care
about.

Because we are interested in collecting a history, we will
walk through every line in the log file and add each new
observation to a list.

times.append(row_dict["ts"])
count.append(row_dict["ppl_count"])

We didn’t have to use JSON formatting in each line of
our log file. We could’ve written anything we wanted in
any text format. It might have made the logging code a
little simpler. It definitely would have made the logging
file more concise and require less memory. But all of that

How to Train Your Robot

gets paid back triple when we go to read and interpret
the logs. There’s no need to write regex string parsers.
There’s no need to reinvent a good way to know
whether a number is a float or an integer. There’s no
need to go in and update the parsing code every time
we add a new log message or want to extract a different
piece of information from the log. The formality that
JSON imposes on us, together with Python's built-in
JSON parsing capabilities, save us all of this pain. This
isn’t the best answer for every logging system, or even
most of them, but it sure works well for us here.

Now that we parsed the logs, we have a running list of
people totals and a matching list of the UNIX time at
which each of those people totals occurred. Data like
this benefits from a visual representation. My own
favorite tool for making plots is Matplotlib. It gives us
complete control over what we plot. It is essentially a
general purpose drawing program with a few plotting
routines built on the top of it. The cost of having that
much power and flexibility is that it has a steeper
learning curve than other tools. For me, the trade-off is
worth it, but won’t judge you if you decide to go a
different way:.

The first step in getting our data ready to plot is to
convert it from a list to a Numpy array. Numpy is a
Python scientific computing library that we are going to

Keeping Time with Python

see a lot of in upcoming chapters. But all we really need
to know about it to get started is that Numpy arrays are
an excellent way to hold groups of numbers.

These you can also install from PyPI

$ python3 -m pip install numpy
$ python3 -m pip install matplotlib

And in our code we can use Numpy to convert our lists
to arrays.

times = numpy.array(times)
count = numpy.array(count)

Of our two arrays, count is straightforward. It’s the total
number of people counted so far. times is less easy to
interpret. One thing we can do to help with that is to
convert it from a UNIX timestamp to the number of
seconds since we started counting. To do that, we
subtract the smallest time to be found in the whole
bunch from every other UNIX time. What we have left is
the elapsed value since the very first measurement was
made, in seconds.

minutes = (times - np.min(times)) / 60

Another small tweak that I make out of personal
preference is to convert the time from seconds to

How to Train Your Robot

minutes. I'm assuming here that people counting might
go on for an hour or two. Reasoning in terms of dozens
of minutes requires less mental effort than thinking
about thousands of seconds. Although the underlying
information is the same, this is a small thing we can do
to make the analysts' life easier, and, to be honest, "the
analyst" is probably us. It's not at all a matter of catering
to laziness or coddling the plot reader. It is an
acknowledgment that we can only think about so many
things at once. Every logic step, every mental
transformation, every visual leap we can save the reader
frees up their brain to make connections and see
patterns that otherwise might remain hidden. We want
to exploit any advantage we can give the reader.

As a bonus, if we are making this report for someone
else, they will appreciate it. Making insights pop out for
a reader makes them feel smarter, and when something
we give them makes them feel smarter, that makes us
look smarter. Everybody wins.

Keeping Time with Python

Now that we have our data pre-formatted, prepared and
pre-processed, we can create the plot itself. The code
here shows a bare-bones set up for plotting a line and
adding some axis labels. It meets our needs just fine.

fig = plt.figure()

ax = fig.gca()

ax.plot(minutes, count)
ax.set_xlabel("Counting time (minutes)")
ax.set_ylabel("Total people")

There are 1000 other things we can do with Matplotlib,
and will end up doing a lot of them before we’re done,
but for the meantime, this is all we need for looking at
our counting history.

In the completed script I added a few other niceties. It
iterates over all the adder logs present and creates a
separate plot for each one. It saves the plots with the
same UNIX time prefix as the log file. It ignores entries
in the log file that have nothing to do with people count.
It handles the case where the log file is empty.

How to Train Your Robot

import json

import os

import numpy as np

import matplotlib.pyplot as plt

filenames = os.listdir()
for filename in filenames:
if filename.__contains__("adder.log"):
log_id = filename.split("_")[@]
times = []
count = []
with open(filename, "rt") as f:
lines = f.readlines()
for line in lines:
try:
row_dict = dict(json.loads(1line))
times.append(row_dict["ts"])
count.append(row_dict["ppl_count"])
except Exception:
pass
times = np.array(times)
count = np.array(count)

try:

minutes = (times - np.min(times)) / 60
except ValueError:

minutes = ©

count = @

fig = plt.figure()

ax = fig.gca()

ax.plot(minutes, count)
ax.set_xlabel("Counting time (minutes)")
ax.set_ylabel("Total people")
plt.savefig(f"{log_id}_report.png")

report.py

Keeping Time with Python

Plotting the data helps us see relationships that we
couldn't have easily gotten by browsing the log file.

300 ~

250

]

(=]

o
L

150 +

Total people

100 +

50

T T T T T
0.0 0.5 1.0 1.5 2.0
Counting time (minutes)

At the far right hand side, it shows the total number of
people counted so far. But it also shows how we got
there. Areas of rapid people flow show up as steep
sections of the curve. We can even see a couple of places
at around 0.2 and 1.9 minutes where a keypress was
undone, resulting in a brief drop in the count.

A cursory visual inspection of the plot will also reveal
any unusual failures. If the interface had stopped
responding for a while and failed to report keypresses,
that would show up as a perfectly flat portion of the

How to Train Your Robot

plot. If somehow a bug caused a keypress of 9 to be
counted as 99, that would show up as an unexplained
vertical jump in the plot. What we see here is a mostly
smooth, mostly increasing plot of people count, a
plausible representation of what happened. A plausible
plot isn’t a guarantee that nothing bad happened. It's
still possible that people were counted incorrectly or a
keypress was missed or something was counted twice.
But it does give a way to catch bugs that would be
difficult to catch any other way, as well as an intuitive
sense of everything that happened during this people
counting session. It shows that through this particular
gate for this particular two minute interval, about 330
people passed through. You can imagine extending this
through the duration of the concert and aggregating it
across all gates to get the full report of just how many

happy fans got to see Billie Eilish that night.

2 e
ol 7% ‘y,;’
/4 4
74 4

#
. 4
-
I @
"

"Please, sir, can I have some more Numpy?"

Keeping Time with Python

Shell scripting

Before we finish, there’s one more piece of engineering I
want to introduce: the shell script. If you are working at
the command line, you probably find yourself typing
the same things over and over.

python3 -m flake8 *.py
python3 -m black *.py

And after running the ppl_counter.py and report.py
scripts a few times, you have probably generated a
healthy collection of .log files and .png's. Given time,
these will seem to replicate and take over your
development directory. To handle this, I like to
frequently move any .log and .png files to an archive
directory. This becomes another set of commands that I
type frequently.

mv *.log archive
mv *.png archive

Typing this out is only a minor inconvenience, and they
are only a handful of lines, but even so, they add up. For
me the bigger factor than the inconvenience is that
sometimes I forget to flake8 my scripts. I forget to run
black and clean up the formatting. I forget to move my
log files and png’s to the archive. And so I create a little

How to Train Your Robot

bit of a mess, and worse, I slow myself down with
avoidable bugs.

All of this is to say that even though I remain opposed
to clever engineering for its own sake, here the cost is
low and the benefits significant enough to be worth it.
The solution I'm talking about is a shell script.

First off, an apology to those of you working in
Windows. Windows has options for doing things very
like this, either in a DOS terminal or in a PowerShell or a
Cygwin console. In each case the details are a little
different, and I am going to abdicate my teaching
responsibilities here to others who are better qualified.

The macOS and Linux environments aren’t identical, but
they are close enough that this approach will work on
both.

A shell script is a whole lot like a Python script, except it
is interpreted by the shell, rather than by a Python
interpreter. It is a text file and usually ends in .sh,
although this is convention only. The shell doesn’t care
what you name it. This is mostly to help us so that when
we see the file in three weeks, we remember what’s in it.

Keeping Time with Python

In our shell script, we can add everything that we would
normally type at the command line, exactly as we would

type it.

mkdir -p archive
mv *.log archive/
mv *.png archive/

python3 -m black *.py
python3 -m flake8 *.py

clean.sh

The one nicety we add is a check whether an archive
directory exists, and if it doesn’t, we create one: mkdir
-p archive. And that’s it. That’s a shell script.

To run it, we type source and the name of the shell
script at the command line.

$ source clean.sh

All done! =
10 files left unchanged.

The shell interpreter finds the text file containing the
shell script and runs the lines, one by one, as if we had
typed them.

How to Train Your Robot

We go from having to remember several things to
remembering one thing, from having to type several
lines to having to typing one short line. It's a small win,
but since the whole thing takes maybe one minute to set
up, it’s a small cost. The first time it helps us avoid a 10
minute debugging loop, it will have paid for itself many
times over. And I'm not gonna lie, the first time you get
to casually drop in conversation that you use shell
scripts in your everyday workflow, it’s a bit of a rush.

What's next?

We covered a lot of ground in this chapter. We are now
armed with a working knowledge of processes and
interprocess communication. That’s kind of a big deal. It
will be one of our big foundation stones for everything
that follows. We also covered call logging, reporting,
and a handful of software engineering tricks. This
rounds out our ring of skeleton keys for getting into
robotics.

In the next chapter, we are going to use everything
we’ve learned about processes, time, and pacemakers to
start animating simulated robots. To do this we are
going to have to talk about plotting, visualization, and
animation. We're just getting to the good part. Stick
around.

Keeping Time with Python

Recap

multiprocessing is the Python package that helps
spawn and connect processes from our code. Create new
processes with a call to Process(). Use a Queue to help
processes pass objects back and forth.

The getkey package is super helpful for grabbing
keypresses.

The flake8 package is worth its weight in gold for
catching syntax errors ahead of time.

The black package is also a useful tool. It reformats
Python code to a readable and PEP 8-compliant format.

The logging package is useful for creating, managing,
and writing to log files.

JSON is a helpful text format for communicating data
between human and machine. Python's json package
unlocks a toolset for working with it.

Numpy and Matplotlib are invaluable numerical
processing and plotting packages. We will become much
better acquainted with them in future chapters.

Packages

black

flake8

getkey

json

logging
matplotlib
multiprocessing
numpy

pip

How to Train Your Robot

https:/ /pypi.org/project/black/

https:/ /pypi.org/project/flake8/

httos: . . |

httos://docs. oyt 3/library /ison bl

https://docs.python.org/3/library /logging. html

https://matplotlib.org/

https://d | 3/l " ing himl

hitpsi//numpyorg/

https://pypi.org/project/black/
https://pypi.org/project/flake8/
https://pypi.org/project/getkey/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/logging.html
https://matplotlib.org/
https://docs.python.org/3/library/multiprocessing.html
https://numpy.org/
https://pypi.org/project/pip/

Keeping Time with Python

Resources

1. The Robot Operating System
https://en.m.wikipedia.org/wiki/Robot Operating System

2. Billie Eilish is a popular musician.
https:/ /www.youtube.com/watch?v=DyDfeMOUjCI

3. PyPI, the Python Package Index.
https: i.0r

4. It looks like it wasn't actually Ford who first said this. But as
(probably someone other than) Mark Twain said, "Never let the truth
get in the way of a good story."

5. PEP-8. Python Extension Proposals (https://peps.python.org/)

are a catch-all for several diverse types of documents, such as
proposed syntax changes, reference materials, philosophical essays,
and third party packages. They are mostly numbered in order of
creation, so PEP-8 is an early one. Although most of it is in the form
of recommendations rather than commandments, it has the weight of
consensus and tenure behind it. Unless you have a good reason to do
otherwise, you're always safe following PEP-8 style.

https:/ /peps.python.org/pep-0008

6. Rust is a popular programming language. It emphasizes speed,
but with fewer opportunities to shoot yourself in the foot than are
offered by C and C++.

https://www.rust-lang.or:

https://en.m.wikipedia.org/wiki/Robot_Operating_System
https://www.youtube.com/watch?v=DyDfgMOUjCI
https://pypi.org/
https://collectorsautosupply.com/blog/true-or-false-did-ford-really-say-any-color-the-customer-wants-as-long-as-its-black/
https://collectorsautosupply.com/blog/true-or-false-did-ford-really-say-any-color-the-customer-wants-as-long-as-its-black/
https://peps.python.org/
https://peps.python.org/pep-0008/
https://www.rust-lang.org/

How to Train Your Robot

About the Author

Robots made their way into Brandon's imagination as a
child while he watched The Empire Strikes Back on the
big screen, one buttery hand lying forgotten in a tub of
popcorn. He went on to study robots and their ways at
MIT and has been puzzling over them ever since. His
lifetime goal is to make a robot as smart as his pup. The

pup is skeptical.

To see more of his work, visit brandonrohrer.com

http://brandonrohrer.com

